楼主: a智多星
702 0

基于RCNN的无人机巡检图像电力小部件识别研究 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-11 07:00:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:随着无人机(UAV)在电力巡线作业中的应用推广,对无人机巡检图像的信息挖掘或目标识别需求也越来越强烈。传统的电力部件识别流程常使用经典的机器学习算法,如支持向量机(SVM)、随机森林或adaboost,结合梯度、颜色或纹理等浅层特征来对电力部件进行识别,难以充分利用无人机巡检图像的信息,并且难以达到较高的准确率。卷积神经网络(CNN)在目标识别中表现优异,在很多目标识别场景之中成为首选算法。基于区域的卷积神经网络(RCNN)通过使用CNN从图像中提取可能含有目标的区域来检测并识别目标,但是计算复杂,难以满足识别海量电力巡检图片的需求。Fast R-CNN和Faster RCNN利用CNN网络提取图像特征,后接一个区域提议层,优化了提取可能含有目标区域的方式并改进识别目标的分类器,使目标的检测和识别几乎实时。本文详细描述了Faster R-CNN算法流程,并在无人机电力线巡检图像部件检测中使用,然后分别对DPM、SPPnet和Faster R-CNN识别方法进行了对比分析,利用实际采集的电力小部件巡检数据构建的数据集对3种方法进行测试验证,并讨论了不同参数对识别结果的影响。实验结果表明,基于深度学习的识别方法实现电力小部件的识别是可行的,而且利用Faster R-CNN进行多种类别的电力小部件识别定位可以达到每张近80 ms的识别速度和92.7%的准确率。

原文链接:http://www.cqvip.com//QK/86408A/201702/671177218.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:CNN 无人机 adaboost Faster 机器学习算法 深度学习 RCNN 卷积神经网络 无人机巡检图像 电力部件识别

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-26 03:26