楼主: a智多星
801 0

基于代价敏感神经网络的警告分类研究 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-13 03:00:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:静态分析工具可以帮助开发人员在项目编码初期定位可能存在缺陷的代码。然而有研究表明,此类工具往往会报告大量的警告,且其中大部分为误报警告。为了增强静态分析工具的可用性,研究者们通常采用统计和机器学习方法将警告分类为有效警告和误报警告。然而,现有警告分类方法并未考虑大量误报警告造成警告数据类不平衡问题,以及误分类代价不等的问题。鉴于此,分别将BP神经网络和基于过采样、阈值操作、欠采样方法的代价敏感神经网络应用到有效警告的分类中。实验结果对比发现,相比BP神经网络,基于代价敏感神经网络方法在有效警告查全率方面平均提高了44.07%,且当有效警告被误分类的代价高于一定值时,代价敏感分类方法能得到更低的分类代价。

原文链接:http://www.cqvip.com//QK/94293X/201706/672377501.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 神经网 BP神经网络 cqvip 分析工具 有效警告 误报警告 代价敏感 类不平衡 神经网络

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 06:55