楼主: AIworld
654 0

一种简洁高效的加速卷积神经网络的方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-15 07:40:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:卷积神经网络是机器学习领域一种广泛应用的方法,在深度学习中发挥着重要的作用。由于卷积神经网络一般需要多个层,而且训练数据通常都很大,所以网络训练可能需要几小时甚至很多天。目前虽然有一些利用GPU加速卷积神经网络训练的研究成果,但基本上都是实现方式复杂,需要技巧很高,而且容易出错。提出了一种简洁、高效的加速卷积神经网络训练的方法,其主要过程是将卷积层展开,这样卷积层和全连接层的主要训练步骤都可以用矩阵乘法表示;再利用BLAS库高效计算矩阵乘法。这种方法不需要过多考虑并行处理的细节和处理器的内核特点,在CPU和GPU上都能加速。实验证明,GPU上使用该方法比传统的CPU上的实现快了100多倍。

原文链接:http://www.cqvip.com//QK/84018X/201433/662760967.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 神经网 cqvip 研究成果 机器学习 卷积神经网络 卷积展开 矩阵乘法 CUDA BLAS

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-1 05:16