楼主: AIworld
803 0

电能表健康度分析及整体运行状态预测方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-15 11:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:通过基于“厂商+批次”对电能表整体运行状态进行分析,不仅可以发现电能表的运行故障率呈现出明显的层次分布,同时还能发现家族性的问题或者缺陷,实现基于传统的人工经验诊断转变为基于机器学习智能分析预测。第一阶段:以厂商和生产批次为对象,通过对电能表状态的故障率、报废费和折旧率进行分析,将所有电能表的分析数据降维整合为“非健康度曲线”的一维数据,且利用散点图将分析对象非健康值展现。不仅能告诉我们每个批次电能表的现状,还能告诉我们哪些批次存在问题,根据不同的预警等级,确定电能表故障的严重性。第二阶段:通过对电能表工作状态和工作环境实时监测,借助机器学习中线性回归的算法,诊断、预测电能表的实际运行状态,预测电能表非健康度值变化趋势。基于上述二个阶段的分析,为电能表状态检修、备品备件等工作提供辅助决策依据。

原文链接:http://www.cqvip.com//QK/88715A/201607/670011220.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:预测方法 电能表 cqvip 机器学习 交流学习 非健康值 线性回归 数据挖掘分析 整体状态分析

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-9 12:07