楼主: DL-er
444 0

证据理论与模糊神经网络相结合的身份估计方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-18 22:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:重点研究了在数据融合身份估计领域中D-S证据理论与模糊神经网络相结合的多传感器数据融合方法.Dempster-Shafer证据理论方法是对Beyes决策检验法的推广,证据理论比概率论满足更弱的公理系统,并且在区分不确定与不知道等方面显示了很大的灵活性,但是在基于证据理论的身份估计融合中,基本可信度的分配是一个与应用密切相关的问题,也是实际应用中最难的一步.利用模糊神经网络来处理证据理论中的基本可信度分配问题,并对几种空中目标进行了身份估计数据融合,经计算机仿真实验证实了该方法的有效性.

原文链接:http://www.cqvip.com//QK/91376X/200301/7502571.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 相结合 神经网 cqvip 计算机仿真 D-S证据理论 基本可信度分配 模糊神经网络 数据融合 身份估计

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-6 02:41