楼主: 人工智能-AI
489 0

基于OLI影像多参数设置的SVM分类研究 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-23 05:20:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:在遥感影像自动分类中仅使用光谱特征很难产生正确的分类,OLI影像是波段数较多的多光谱影像,如果增加纹理、几何等多种特征以提高分类精度,就会使得特征的维度很高.支持向量机善于解决小样本、非线性和高维的影像分类问题,但是核函数和参数的设置只能依靠实验来获得.文中在OLI影像中提取了23个特征,逐个测试核函数和参数值对分类结果的影响.研究的主要结论如下:RBF核的支持向量机分类精度最高,Sigmoid核支持向量机分类精度最低;核函数的选择对分类精度的影响最大;核函数和参数值的变化不会影响重要特征的使用,3种核的支持向量机分类所使用的重要特征基本一致.

原文链接:http://www.cqvip.com//QK/98521X/201406/663185306.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:参数设置 SVM OLI 支持向量机 cqvip 支持向量机 核函数 机器学习 分类 OLI影像

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-6 18:11