楼主: 人工智能-AI
890 0

基于LSI和SVM相结合的文本分类研究 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-25 23:00:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:传统的向量空间模型使用关键词来表示文本,但没有考虑关键词的一词多义和多词一义问题。为了解决该问题,提出了一种潜在语义索引和支持向量机相结合的文本分类方法,使用潜在语义索引方法获得原始特征向量的潜在语义结构。实验结果表明,该方法同单独使用支持向量机的方法相比,分类准确率有小幅度的下降,但特征向量获得了大幅度的降维。

原文链接:http://www.cqvip.com//QK/95033X/200723/26166742.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:LSI 相结合 SVM 支持向量机 cqvip 潜在语义索引 奇异值分解 支持向量机 文本分类 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 13:35