楼主: DL-er
614 0

基于语料库的名词短语识别方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-2-2 06:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:名词短语识别是自然语言处理领域的非常重要的子任务。利用最大熵法(ME)、支持向量机法(SVM)和隐马尔可夫模型(HMM)3种有代表性的统计方法对汉语文本进行名词短语识别,并对实验结果进行比较分析。结果表明HMM法在封闭测试中优势明显,SYM法在小样本模式的开放测试中表现良好,而最大熵方法在两种测试中的识别结果均比较理想。分析表明,HMM方法侧重应用在与线性序列相关的现象上;SVM方法适用于有限的汉语带标信息的分类问题;而最大熵方法特别适用于把不受限的文本特征加入统计模型中的情况。http://www.cqvip.com//QK/91802A/200703/24154238.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:识别方法 语料库 支持向量机 cqvip 语言处理 中文信息处理 最大熵 支持向量机 隐马尔可夫模型 短语识别

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-4 05:34