楼主: 论文库
562 0

基于词袋模型聚类的异常流量识别方法 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-2-9 00:39:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对现有异常流量检测方法的识别准确率低且快速识别需要确定阈值等问题,基于词袋模型聚类,提出一种改进的网络异常流量识别方法。通过对已有的异常流量和正常流量进行K—means均值聚类,得到网络流量中的流量关键点,将网络流量转化映射到相应流量关键点后建立直方图,并采用半监督学习方式对异常流量进行检测。实验结果表明,与基于朴素贝叶斯、支持向量机等的识别方法相比,该方法具有更好的异常流量识别效果。http://www.cqvip.com//QK/95200X/201705/672135497.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:识别方法 支持向量机 cqvip means 朴素贝叶斯 词袋模型 机器学习 聚类 数据挖掘 异常流量识别

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 18:07