楼主: AIworld
431 0

融合多元特征信息的前方车辆图像识别 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-13 17:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为了进一步降低虚假目标车辆的检测风险,提出了一种基于多元特征信息匹配的前方车辆图像识别方法。首先依据路面灰度均值突变搜索车辆候选区域,然后利用双通道Gabor滤波器提取车辆样本图像的多尺度方向特征,联合AdaBoost分类器与Cascade级联分类器形成一系列强分类器,对产生的5尺度8方向高维特征向量实施降维处理,同时分类筛选特征样本,最后结合灰度信息熵对称性测度辨识目标车辆存在性,完成了前方目标车辆的检测定位。研究结果表明:所提方法的检测准确率为96.7%,比经典算法提高了1.6%;整个检测过程最长耗时35 ms,最短耗时15ms,平均耗时25ms,检测耗时主要受车辆的大小以及背景复杂程度的影响;避免了单一特征下局部有效鉴别信息的损失,具有较好的识别精度和处理速度,车辆误检率仅为3.2%,优于其他车辆识别算法的误检率,提高了虚假目标检测的辨识度。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:adaboost boost SCAD 识别方法 特征向量 交通工程 前方车辆 多元特征信息 Gabor滤波 Adaboost分类器

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 04:07