楼主: 人工智能-AI
749 0

作者-关键词二分网络中的合著关系预测研究 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-2-18 12:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:[目的/意义]明晰由关键词形成的主题内容类关联关系对合著关系预测的影响和作用,形成作者-关键词二分网络上的合著关系预测指标和方法,提高预测准确率和结果可解释性。[方法/过程]首先,在作者-关键词二分网络上抽取多种路径表示作者间的关联关系,并结合关联强度的计算方式,共同形成多种合著关系预测指标;接着应用逻辑回归的机器学习方法学习不同指标对于合著关系预测的贡献,由此构建二分网络中基于路径组合的合著关系预测指标;最后基于链路预测方法对指标进行评测。[结果/结论]在图书情报领域的实验证实,作者-关键词二分网络中路径组合指标的准确率最高,较4种单路径指标均有大幅度提高;多种路径均对合著关系预测产生影响,且路径“作者-关键词-作者”(AKA)的作用明显高于路径“作者-关键词-作者-关键词-关键词”(AKAKA);同时,使作者产生关联的关键词能表示作者间的共同研究主题和兴趣,使得结果更易解释。下一步将引入更多路径到该模型中并在其他领域验证方法的通用性。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:关键词 学习方法 学术交流 验证方法 研究主题 作者-关键词二分网络 合著网络 合著关系预测 路径组合指标 图书情报

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-6 00:42