楼主: AIworld
535 0

机器学习方法用于选择性环氧化酶-2抑制剂活性预测模型的建立 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-20 03:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:与传统的非甾体类消炎药相比,选择性环氧化酶-2抑制剂具有无胃肠道粘膜损伤,溃疡和肾功能障碍等严重的副作用,设计选择性环氧化酶-2抑制剂具有重要意义。本文用支持矢量学习机和神经网络两种机器学习方法建立选择性环氧化酶-2抑制剂的活性预测模型,以期为选择性环氧化酶-2抑制剂药物的合成提供先导化合物。我们将467个环氧化酶-2抑制剂用Kennard-Stone方法分为训练集,验证集和独立测试集,对每一抑制剂分子我们计算了463个包含组成描述符和拓扑描述符的分子描述符来表征其分子结构,并通过F-Score方法选取最重要的分子描述符用于分类模型的建立。结果表明,SVM方法通过变量筛选后具有很好的预测能力,其预测正确率达到93.30%。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 学习方法 预测模型 抑制剂 氧化酶 环氧化酶-2抑制剂 分子描述符 机器学习方法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-5 18:24