- webuse grunfeld, clear
- xtset company year
- // No robust option
- xtreg invest mvalue kstock, re
- est store re
- xtreg invest mvalue kstock, fe
- est store fe
- hausman fe re
- . // No robust option
- . xtreg invest mvalue kstock, re
- Random-effects GLS regression Number of obs = 200
- Group variable: company Number of groups = 10
- R-sq: Obs per group:
- within = 0.7668 min = 20
- between = 0.8196 avg = 20.0
- overall = 0.8061 max = 20
- Wald chi2(2) = 657.67
- corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
- ------------------------------------------------------------------------------
- invest | Coef. Std. Err. z P>|z| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- mvalue | .1097811 .0104927 10.46 0.000 .0892159 .1303464
- kstock | .308113 .0171805 17.93 0.000 .2744399 .3417861
- _cons | -57.83441 28.89893 -2.00 0.045 -114.4753 -1.193537
- -------------+----------------------------------------------------------------
- sigma_u | 84.20095
- sigma_e | 52.767964
- rho | .71800838 (fraction of variance due to u_i)
- ------------------------------------------------------------------------------
- . est store re
- . xtreg invest mvalue kstock, fe
- Fixed-effects (within) regression Number of obs = 200
- Group variable: company Number of groups = 10
- R-sq: Obs per group:
- within = 0.7668 min = 20
- between = 0.8194 avg = 20.0
- overall = 0.8060 max = 20
- F(2,188) = 309.01
- corr(u_i, Xb) = -0.1517 Prob > F = 0.0000
- ------------------------------------------------------------------------------
- invest | Coef. Std. Err. t P>|t| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- mvalue | .1101238 .0118567 9.29 0.000 .0867345 .1335131
- kstock | .3100653 .0173545 17.87 0.000 .2758308 .3442999
- _cons | -58.74393 12.45369 -4.72 0.000 -83.31086 -34.177
- -------------+----------------------------------------------------------------
- sigma_u | 85.732501
- sigma_e | 52.767964
- rho | .72525012 (fraction of variance due to u_i)
- ------------------------------------------------------------------------------
- F test that all u_i=0: F(9, 188) = 49.18 Prob > F = 0.0000
- . est store fe
- . hausman fe re
- ---- Coefficients ----
- | (b) (B) (b-B) sqrt(diag(V_b-V_B))
- | fe re Difference S.E.
- -------------+----------------------------------------------------------------
- mvalue | .1101238 .1097811 .0003427 .0055213
- kstock | .3100653 .308113 .0019524 .0024516
- ------------------------------------------------------------------------------
- b = consistent under Ho and Ha; obtained from xtreg
- B = inconsistent under Ha, efficient under Ho; obtained from xtreg
- Test: Ho: difference in coefficients not systematic
- chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)
- = 2.33
- Prob>chi2 = 0.3119
- // With robust option
- xtreg invest mvalue kstock, re robust
- xtoverid
- . // With robust option
- . xtreg invest mvalue kstock, re robust
- Random-effects GLS regression Number of obs = 200
- Group variable: company Number of groups = 10
- R-sq: Obs per group:
- within = 0.7668 min = 20
- between = 0.8196 avg = 20.0
- overall = 0.8061 max = 20
- Wald chi2(2) = 70.13
- corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
- (Std. Err. adjusted for 10 clusters in company)
- ------------------------------------------------------------------------------
- | Robust
- invest | Coef. Std. Err. z P>|z| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- mvalue | .1097811 .0137557 7.98 0.000 .0828206 .1367417
- kstock | .308113 .0549728 5.60 0.000 .2003683 .4158576
- _cons | -57.83441 24.84323 -2.33 0.020 -106.5262 -9.142576
- -------------+----------------------------------------------------------------
- sigma_u | 84.20095
- sigma_e | 52.767964
- rho | .71800838 (fraction of variance due to u_i)
- ------------------------------------------------------------------------------
- . xtoverid
- Test of overidentifying restrictions: fixed vs random effects
- Cross-section time-series model: xtreg re robust cluster(company)
- Sargan-Hansen statistic 7.320 Chi-sq(2) P-value = 0.0257
在今年暑假,我预计于上海与长沙 (都用 Stata) 各办一场当代最新与实用计量讲习会 (会包括 panel data 之分析,为何不应该用 hausman 指令,我会说明 这些理由),敬请拭目以待。



雷达卡




京公网安备 11010802022788号







