解:
$\displaystyle \begin{align*}\lim_{n \to +\infty }(\frac{f(a+\frac{1}{n})}{f(a)})^n&=\lim_{n \to +\infty }e^{\displaystyle n(\ln f(a+\frac{1}{n})-\ln f(a))}\\\\&=\lim_{n \to +\infty }e^{\displaystyle \frac{\ln f(a+\frac{1}{n})-\ln f(a)}{a+\frac{1}{n}-a}}\\\\&=e^{\displaystyle \lim_{n \to +\infty }\frac{\ln f(a+\frac{1}{n})-\ln f(a)}{f(a+\frac{1}{n})-f(a)}\cdot \frac{f(a+\frac{1}{n})-f(a)}{a+\frac{1}{n}-a}}\\\\&=e^{\displaystyle \frac{f'(a)}{f(a)}}.
\end{align*}$


雷达卡
京公网安备 11010802022788号







