楼主: torero
3098 14

[其它] 一道不知如何解的题? [推广有奖]

  • 0关注
  • 0粉丝

本科生

95%

还不是VIP/贵宾

-

威望
0
论坛币
65 个
通用积分
0.3491
学术水平
5 点
热心指数
2 点
信用等级
2 点
经验
585 点
帖子
38
精华
0
在线时间
180 小时
注册时间
2005-12-1
最后登录
2024-8-31

楼主
torero 发表于 2006-2-25 08:58:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

一纯交换经济,两个行为主体A和B,两种商品X和Y,经济中的资源禀赋为XA+XB=10,YA+YB=10. A和B的效用函数分别为UA(XA,YA)=3XA+5YA, UB(XB,YB)=9XB+2YB.

问假如初始财富配置为A和B各拥有5单位的X和Y,当经济达到竞争均衡时,两种商品的价格比例.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:行为主体 效用函数 如何 财富 资源

沙发
万岁中国人 发表于 2006-2-25 19:04:00

给你一个解决的提示:

用UA(XA,YA)表示消费者A的效用函数,UB(XB,YB)表示消费者B的效用函数,给定B的效用水平既定,为UB0,我们要在B的效用水平既定的条件下求A的效用的最大化。约束条件是:

UB(XB,YB)=UB0

XA + XB = WX

YA + YB = WB

其中WX =WXA + WXB,是X产品总量;WX =WYA + WYB,是Y的产品总量。根据目标函数与约束条件,得到下列拉格朗日函数:

L=UA(XA,YA)- λ[UB(XB,YB)-U0]-μ1[XA + XB -WX]-μ2[YA + YB -WY]

其中上式中的λ是效用约束条件的拉格朗日乘数,μ1、μ2是禀赋约束条件的拉格朗日乘数。对变量XA、XB、YA、YB求一阶偏导数,并令偏导数值等于0,得到下面的四个必要一阶条件:

∂L/∂XA= ∂UA/∂XA1 =MUAXA 1 =0

∂L/∂YA= ∂UA/∂YA1 =MUAYA –μ2 =0

∂L/∂XB= - λ∂UB/∂XB1 =MUBXB –μ1 0

∂L/∂YB=- λ∂UB/∂YB1 =MUBYB–μ2 =0

从而可以得到:

MRSAXY=(∂UA/∂XA )/(∂UA/∂YA) = MUAXA /MUAYA 12

MRSBXY=(∂UB/∂XB )/(∂UB/∂YB) = MUBXB /MUBYB 12

综合上述两式,可以得到:MRSAXY=MRSBXY

藤椅
torero 发表于 2006-2-25 19:18:00

综合上述两式,可以得到:MRSAXY=MRSBXY ????

这个结论大家都知道.但:

两人都是完全替代偏好,且MRS不一样.

MRSAXY=3/5

MRSBXY =9/2

板凳
万岁中国人 发表于 2006-2-25 19:18:00
以下是引用torero在2006-2-25 8:58:00的发言:

一纯交换经济,两个行为主体A和B,两种商品X和Y,经济中的资源禀赋为XA+XB=10,YA+YB=10. A和B的效用函数分别为UA(XA,YA)=3XA+5YA, UB(XB,YB)=9XB+2YB.

问假如初始财富配置为A和B各拥有5单位的X和Y,当经济达到竞争均衡时,两种商品的价格比例.

  由于本题目中,A经济主体与B经济主体的效用函数是线性的,因此不满足边际效用递减

规律,他们认为两种资源是完全替代关系。

  考察到A,他始终认为,可以用3个Y换5个X,而总效用不变;考虑到B,他始终认为,

可以用9个Y换2个X,而总效用不变。

  从而相比较而言,A认为单位Y的效用高于单位X的效用,而B认为单位Y的效用低于单位

X的效用,从而A和B可以相互交换X和Y。即A用他自己的X换取B所拥有的Y。

  最后的价格充满了不确定性。但可以肯定的是,A最后完全掌握的是Y,而B完全掌握了X。

报纸
西进金龙 发表于 2006-2-25 20:50:00
以下是引用万岁中国人在2006-2-25 19:18:00的发言:

  由于本题目中,A经济主体与B经济主体的效用函数是线性的,因此不满足边际效用递减

规律,他们认为两种资源是完全替代关系。

  考察到A,他始终认为,可以用3个Y换5个X,而总效用不变;考虑到B,他始终认为,

可以用9个Y换2个X,而总效用不变。

  从而相比较而言,A认为单位Y的效用高于单位X的效用,而B认为单位Y的效用低于单位

X的效用,从而A和B可以相互交换X和Y。即A用他自己的X换取B所拥有的Y。

  最后的价格充满了不确定性。但可以肯定的是,A最后完全掌握的是Y,而B完全掌握了X。






同意。

设Y价格为1,X价格为P,

对A来讲,只要P>0.6,他就会将全部X交换出去;

对B来讲,只要P<4.5,他就会换入X。

最终交换价格应该在0.6和4.5之间。

这类似于李嘉图比较优势理论的情形,

在线性生产函数下,最终交换价格在两国边际转换率之间,

但不确定。

[此贴子已经被作者于2006-2-25 20:50:27编辑过]

地板
torero 发表于 2006-2-26 09:34:00

如果最后结果是A完全占有Y,B完全占有X,则双方的托改进不相等。A的托改进等于10,B的改进等于35,这不是一个合理的解。从双方的效用函数来看,MUYA=5MUXB=9,由此可见,如果有合理解的话,A并不愿意将自己的全部X与B的全部Y相交换。应该是,双方持有两种商品的禀赋相交换后,双方的帕累托改进相等,否则可能是Kaldor-Hicks improvement。在纯交换经济中,不可能出现这样的改进。

本人思考出一个思路,大家讨论一下。

假定完全信息(complete information),假定二人效用同质(homogeneous),则二人经过讨价还价博弈之后,二人帕累托改进的效用应该相等。由双方效用函数看,B愿意将其所持有的全部Y与A交换X,而A只愿意用部分的X交换B全部的Y。令这部分X为ΔX,而ΔY=5。

交换前:

=40,U=55

交换后:

=3*(5-ΔX)+5*10

=9*(5+ΔX)+0

二人的帕累托改进应相等:

-U=U-U

计算得ΔX=25/12

故交换率E=ΔY/ΔX=5/(25/12)=12/5

交换率E即是达到竞争均衡时的两种商品价格比率,即:P1/P2=E=12/5

7
万岁中国人 发表于 2006-2-26 10:10:00

你谈到的关于完全交换经济中,不存在卡尔多希克斯改进的问题,只是一个帕累托最优化的过程。另外,除非运用总效用函数,才可以求得最大化两个人的共同效用,但这是很难被承认的,因为A的效用与B的效用不能加总。

因此,此题的解就成为了多解问题。你可以参阅一下儿艾奇沃斯盒的构造过程,就知道了,它的解不是固定的。而且本题目中的等效用曲线都是直线型的,不满足边际效用递减的原理,因此也不会满足艾奇沃斯盒的交易模型。

8
torero 发表于 2006-2-26 12:31:00

我在这儿不是已经假定效用是homogeneous嘛,这一假定意味着人们的效用是可以相加的.边沁社会福利函数、罗尔斯社会福利函数等不都是这种假定嘛。虽然这种假定有不合理之处,但也有合理之处。

其实在edgeworth box分析中,双方的效用就是homogeneous,因为双方共用一效用轴。

9
万岁中国人 发表于 2006-2-26 12:41:00
以下是引用torero在2006-2-26 12:31:00的发言:

我在这儿不是已经假定效用是homogeneous嘛,这一假定意味着人们的效用是可以相加的.边沁社会福利函数、罗尔斯社会福利函数等不都是这种假定嘛。虽然这种假定有不合理之处,但也有合理之处。

其实在edgeworth box分析中,双方的效用就是homogeneous,因为双方共用一效用轴。

  在edgeworth box分析中,双方的效用不是homogeneous,因为双方的共用轴不表示效

用的大小,而是资源的量的多少,即资源禀赋的总量和各自的量。而edgeworth box在分析

效用时,采用的是序数效用论和边际效用递减规律的等效用线分析。

10
万岁中国人 发表于 2006-2-26 12:43:00
再说,如果你认为这个题目中可以采取homogeneousr 的效用分析,那么只要在约束条件下,求两个效用的和函数的最大化就可以了。那就简单多了。但这只是最后的结果,并不表征价格,或者说你只能求出平均的交换率,而不能求出边际交换率,因为边际交换率对各自来说,都是定值。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-6 03:23