楼主: wxccxw888
2643 2

发一本线性回归的教程和答案 [推广有奖]

  • 0关注
  • 0粉丝

已卖:46份资源

本科生

6%

还不是VIP/贵宾

-

威望
0
论坛币
2385 个
通用积分
0.7440
学术水平
0 点
热心指数
0 点
信用等级
-1 点
经验
2559 点
帖子
70
精华
0
在线时间
73 小时
注册时间
2009-2-4
最后登录
2024-1-1

楼主
wxccxw888 发表于 2010-2-10 12:19:54 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Contents
Preface xiii
1 Scatterplots and Regression 1
1.1 Scatterplots, 1
1.2 Mean Functions, 9
1.3 Variance Functions, 11
1.4 Summary Graph, 11
1.5 Tools for Looking at Scatterplots, 12
1.5.1 Size, 13
1.5.2 Transformations, 14
1.5.3 Smoothers for the Mean Function, 14
1.6 Scatterplot Matrices, 15
Problems, 17
2 Simple Linear Regression 19
2.1 Ordinary Least Squares Estimation, 21
2.2 Least Squares Criterion, 23
2.3 Estimating σ 2, 25
2.4 Properties of Least Squares Estimates, 26
2.5 Estimated Variances, 27
2.6 Comparing Models: The Analysis of Variance, 28
2.6.1 The F-Test for Regression, 30
2.6.2 Interpreting p-values, 31
2.6.3 Power of Tests, 31
2.7 The Coefficient of Determination, R2, 31
2.8 Confidence Intervals and Tests, 32
2.8.1 The Intercept, 32
2.8.2 Slope, 33
vii
viii CONTENTS
2.8.3 Prediction, 34
2.8.4 Fitted Values, 35
2.9 The Residuals, 36
Problems, 38
3 Multiple Regression 47
3.1 Adding a Term to a Simple Linear Regression Model, 47
3.1.1 Explaining Variability, 49
3.1.2 Added-Variable Plots, 49
3.2 The Multiple Linear Regression Model, 50
3.3 Terms and Predictors, 51
3.4 Ordinary Least Squares, 54
3.4.1 Data and Matrix Notation, 54
3.4.2 Variance-Covariance Matrix of e, 56
3.4.3 Ordinary Least Squares Estimators, 56
3.4.4 Properties of the Estimates, 57
3.4.5 Simple Regression in Matrix Terms, 58
3.5 The Analysis of Variance, 61
3.5.1 The Coefficient of Determination, 62
3.5.2 Hypotheses Concerning One of the Terms, 62
3.5.3 Relationship to the t -Statistic, 63
3.5.4 t-Tests and Added-Variable Plots, 63
3.5.5 Other Tests of Hypotheses, 64
3.5.6 Sequential Analysis of Variance Tables, 64
3.6 Predictions and Fitted Values, 65
Problems, 65
4 Drawing Conclusions 69
4.1 Understanding Parameter Estimates, 69
4.1.1 Rate of Change, 69
4.1.2 Signs of Estimates, 70
4.1.3 Interpretation Depends on Other Terms in the Mean
Function, 70
4.1.4 Rank Deficient and Over-Parameterized Mean
Functions, 73
4.1.5 Tests, 74
4.1.6 Dropping Terms, 74
4.1.7 Logarithms, 76
4.2 Experimentation Versus Observation, 77
CONTENTS ix
4.3 Sampling from a Normal Population, 80
4.4 More on R2, 81
4.4.1 Simple Linear Regression and R2, 83
4.4.2 Multiple Linear Regression, 84
4.4.3 Regression through the Origin, 84
4.5 Missing Data, 84
4.5.1 Missing at Random, 84
4.5.2 Alternatives, 85
4.6 Computationally Intensive Methods, 87
4.6.1 Regression Inference without Normality, 87
4.6.2 Nonlinear Functions of Parameters, 89
4.6.3 Predictors Measured with Error, 90
Problems, 92
5 Weights, Lack of Fit, and More 96
5.1 Weighted Least Squares, 96
5.1.1 Applications of Weighted Least Squares, 98
5.1.2 Additional Comments, 99
5.2 Testing for Lack of Fit, Variance Known, 100
5.3 Testing for Lack of Fit, Variance Unknown, 102
5.4 General F Testing, 105
5.4.1 Non-null Distributions, 107
5.4.2 Additional Comments, 108
5.5 Joint Confidence Regions, 108
Problems, 110
6 Polynomials and Factors 115
6.1 Polynomial Regression, 115
6.1.1 Polynomials with Several Predictors, 117
6.1.2 Using the Delta Method to Estimate a Minimum or a
Maximum, 120
6.1.3 Fractional Polynomials, 122
6.2 Factors, 122
6.2.1 No Other Predictors, 123
6.2.2 Adding a Predictor: Comparing Regression Lines, 126
6.2.3 Additional Comments, 129
6.3 Many Factors, 130
6.4 Partial One-Dimensional Mean Functions, 131
6.5 Random Coefficient Models, 134
Problems, 137
x CONTENTS
7 Transformations 147
7.1 Transformations and Scatterplots, 147
7.1.1 Power Transformations, 148
7.1.2 Transforming Only the Predictor Variable, 150
7.1.3 Transforming the Response Only, 152
7.1.4 The Box and Cox Method, 153
7.2 Transformations and Scatterplot Matrices, 153
7.2.1 The 1D Estimation Result and Linearly Related
Predictors, 156
7.2.2 Automatic Choice of Transformation of Predictors, 157
7.3 Transforming the Response, 159
7.4 Transformations of Nonpositive Variables, 160
Problems, 161
8 Regression Diagnostics: Residuals 167
8.1 The Residuals, 167
8.1.1 Difference Between ˆe and e, 168
8.1.2 The Hat Matrix, 169
8.1.3 Residuals and the Hat Matrix with Weights, 170
8.1.4 The Residuals When the Model Is Correct, 171
8.1.5 The Residuals When the Model Is Not Correct, 171
8.1.6 Fuel Consumption Data, 173
8.2 Testing for Curvature, 176
8.3 Nonconstant Variance, 177
8.3.1 Variance Stabilizing Transformations, 179
8.3.2 A Diagnostic for Nonconstant Variance, 180
8.3.3 Additional Comments, 185
8.4 Graphs for Model Assessment, 185
8.4.1 Checking Mean Functions, 186
8.4.2 Checking Variance Functions, 189
Problems, 191
9 Outliers and Influence 194
9.1 Outliers, 194
9.1.1 An Outlier Test, 194
9.1.2 Weighted Least Squares, 196
9.1.3 Significance Levels for the Outlier Test, 196
9.1.4 Additional Comments, 197
9.2 Influence of Cases, 198
9.2.1 Cook’s Distance, 198
CONTENTS xi
9.2.2 Magnitude of Di , 199
9.2.3 Computing Di , 200
9.2.4 Other Measures of Influence, 203
9.3 Normality Assumption, 204
Problems, 206
10 Variable Selection 211
10.1 The Active Terms, 211
10.1.1 Collinearity, 214
10.1.2 Collinearity and Variances, 216
10.2 Variable Selection, 217
10.2.1 Information Criteria, 217
10.2.2 Computationally Intensive Criteria, 220
10.2.3 Using Subject-Matter Knowledge, 220
10.3 Computational Methods, 221
10.3.1 Subset Selection Overstates Significance, 225
10.4 Windmills, 226
10.4.1 Six Mean Functions, 226
10.4.2 A Computationally Intensive Approach, 228
Problems, 230
11 Nonlinear Regression 233
11.1 Estimation for Nonlinear Mean Functions, 234
11.2 Inference Assuming Large Samples, 237
11.3 Bootstrap Inference, 244
11.4 References, 248
Problems, 248
12 Logistic Regression 251
12.1 Binomial Regression, 253
12.1.1 Mean Functions for Binomial Regression, 254
12.2 Fitting Logistic Regression, 255
12.2.1 One-Predictor Example, 255
12.2.2 Many Terms, 256
12.2.3 Deviance, 260
12.2.4 Goodness-of-Fit Tests, 261
12.3 Binomial Random Variables, 263
12.3.1 Maximum Likelihood Estimation, 263
12.3.2 The Log-Likelihood for Logistic Regression, 264
xii CONTENTS
12.4 Generalized Linear Models, 265
Problems, 266
Appendix 270
A.1 Web Site, 270
A.2 Means and Variances of Random Variables, 270
A.2.1 E Notation, 270
A.2.2 Var Notation, 271
A.2.3 Cov Notation, 271
A.2.4 Conditional Moments, 272
A.3 Least Squares for Simple Regression, 273
A.4 Means and Variances of Least Squares Estimates, 273
A.5 Estimating E(Y |X) Using a Smoother, 275
A.6 A Brief Introduction to Matrices and Vectors, 278
A.6.1 Addition and Subtraction, 279
A.6.2 Multiplication by a Scalar, 280
A.6.3 Matrix Multiplication, 280
A.6.4 Transpose of a Matrix, 281
A.6.5 Inverse of a Matrix, 281
A.6.6 Orthogonality, 282
A.6.7 Linear Dependence and Rank of a Matrix, 283
A.7 Random Vectors, 283
A.8 Least Squares Using Matrices, 284
A.8.1 Properties of Estimates, 285
A.8.2 The Residual Sum of Squares, 285
A.8.3 Estimate of Variance, 286
A.9 The QR Factorization, 286
A.10 Maximum Likelihood Estimates, 287
A.11 The Box-Cox Method for Transformations, 289
A.11.1 Univariate Case, 289
A.11.2 Multivariate Case, 290
A.12 Case Deletion in Linear Regression, 291
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:线性回归 一本线 Transforming significance Collinearity 教程 线性回归

Applied linear regression 3e Weisberg.pdf
下载链接: https://bbs.pinggu.org/a-549887.html

4.29 MB

需要: 33 个论坛币  [购买]

Solution of Applied Linear Regression (3rd edition).pdf

4.32 MB

需要: 33 个论坛币  [购买]

已有 1 人评分论坛币 收起 理由
宋凌峰 + 999 经管百科积分兑换论坛币(www.pinggu.com)

总评分: 论坛币 + 999   查看全部评分

沙发
lucke(未真实交易用户) 发表于 2010-2-10 12:41:40
不错,好东东,就是太贵了
好像不值哦

藤椅
heyafei03(未真实交易用户) 发表于 2010-11-6 05:42:05
能不能分章节下载?好多哦,想看部分内容,但是那么多钱!!!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-5 21:22