discrim.xls
(15 KB)
1
The LOGISTIC Procedure
Model Information
Data Set _PROJ_.DISCRIM
Response Variable hired hired
Number of Response Levels 2
Number of Observations 28
Model binary logit
Optimization Technique Fisher's scoring
Response Profile
Ordered Total
Value hired Frequency
1 1 9
2 0 19
Probability modeled is hired=1.
Class Level Information
Design
Class Value Variables
sex 0 1
1 -1
Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Intercept
Intercept and
Criterion Only Covariates
AIC 37.165 21.915
SC 38.497 27.244
-2 Log L 35.165 13.915
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 21.2493 3 <.0001
Score 15.6824 3 0.0013
Wald 5.5996 3 0.1328
1 17:47 Saturday, February 15, 2003 2
The LOGISTIC Procedure
Type 3 Analysis of Effects
Wald
Effect DF Chi-Square Pr > ChiSq
education 1 3.8720 0.0491
experience 1 4.5207 0.0335
sex 1 4.9405 0.0262
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -11.1897 4.8002 5.4339 0.0197
education 1 1.1540 0.5865 3.8720 0.0491
experience 1 0.8777 0.4128 4.5207 0.0335
sex 0 1 -2.8526 1.2834 4.9405 0.0262
Odds Ratio Estimates
Point 95% Wald
Effect Estimate Confidence Limits
education 3.171 1.005 10.008
experience 2.405 1.071 5.402
sex 0 vs 1 0.003 <0.001 0.509
Association of Predicted Probabilities and Observed Responses
Percent Concordant 94.2 Somers' D 0.883
Percent Discordant 5.8 Gamma 0.883
Percent Tied 0.0 Tau-a 0.399
Pairs 171 c 0.942


雷达卡



京公网安备 11010802022788号







