解: 令
$t=1+\cos x,dt==-\sin xdx,$
$\begin{align*}\int \frac{1}{\sin x(1+\cos x)}dx&=\int \frac{1}{t^2(t-2)}dt\\\\&=\frac{1}{4}(\int \frac{1}{t-2}dt-\int \frac{1}{t}dt-4\int \frac{1}{t^2}dt)\\\\&=\frac{1}{4}(\ln|t-2|-\ln t+\frac{4}{t})+C\\\\&=\frac{1}{4}(\ln(1-\cos)-\ln(1+\cos x)+\frac{4}{1+\cos x})+C\\\\&=\frac{1}{4}\ln\frac{1-\cos x}{1+\cos x}+\frac{1}{1+\cos x}+C.
\end{align*}$


雷达卡
京公网安备 11010802022788号







