楼主: hylpy1
13109 218

[学习方法] 数学分析考研真题练习二 [推广有奖]

151
hylpy1 在职认证  发表于 2019-8-31 21:58:43
天津大学2019年数学分析考研试题
tj8.png

解:
                $\frac{\partial z}{\partial x}|_{(0,1)}=2,\frac{\partial z}{\partial y}|_{(0,1)}=0.$






152
hylpy1 在职认证  发表于 2019-8-31 21:59:21
天津大学2019年数学分析考研试题
tj9.png




153
hylpy1 在职认证  发表于 2019-8-31 22:00:02
天津大学2019年数学分析考研试题
tj9.png

解:用$\Gamma$函数计算。
            
                       令:
                                 $x^\alpha=t,$
                      则
                                $dx=\frac{1}{\alpha }t^{\frac{1}{\alpha }-1}dt,$

                                 $\begin{align*}\lim_{\alpha \rightarrow +\infty }\int_{0}^{+\infty }e^{-x^\alpha }dx&=\lim_{\alpha \rightarrow +\infty }\int_{0}^{+\infty }\frac{1}{\alpha }t^{\frac{1}{\alpha }-1}e^{-t}dt\\\\&=
\lim_{\alpha \rightarrow +\infty }\int_{0}^{+\infty }e^{-x^\alpha }dx\\\\&=\lim_{\alpha \rightarrow +\infty }\frac{1}{\alpha }\Gamma (\frac{1}{\alpha })\\\\&=\lim_{\alpha \rightarrow +\infty }\Gamma (1+\frac{1}{\alpha })\\\\&=\Gamma (1)=1.
\end{align*}$


154
hylpy1 在职认证  发表于 2019-8-31 22:02:16
天津大学2019年数学分析考研试题
tj10.png


解:
                     $\iiint_\Sigma (x+y+z)dxdydz=\int_{0}^{2\pi}d\theta \int_{0}^{h}rdr\int_{h}^{\sqrt{a^2-r^2}}(r\cos\theta +r\sin\theta +z)dz=\frac{\pi h}{4}.$



更简洁的方法,利用积分区域对$x,y$轴的对称性,由奇函数的性质知:

                      $\iiint_\Sigma (x+y+z)dxdydz=\iiint_\Sigma zdxdydz$

          再用柱面计算坐标,更简单。


155
hylpy1 在职认证  发表于 2019-8-31 22:03:01
天津大学2019年数学分析考研试题
tj11.png

参见八一大神的解答:
1.png







156
hylpy1 在职认证  发表于 2019-8-31 22:03:51
天津大学2019年数学分析考研试题
tj12.png




这题怀疑有误。要真的这样,计算起真的很有难度。昨天看到【八一】大神的一道题解答,觉得应该是同道题。兹贴于下:

1.png

【又其它的解法】
九:法一:证明:由对称性知:$I=\iint\limits_{\sum }{({{x}^{2}}}+{{y}^{2}}+{{z}^{2}}{{)}^{-\frac{3}{2}}}{{(\frac{{{x}^{2}}}{{{a}^{4}}}+\frac{{{y}^{2}}}{{{b}^{4}}}+\frac{{{z}^{2}}}{{{c}^{4}}})}^{-\frac{1}{2}}}dS$
                       $=8I=\iint\limits_{{{S}_{1}}}{({{x}^{2}}}+{{y}^{2}}+{{z}^{2}}{{)}^{-\frac{3}{2}}}{{(\frac{{{x}^{2}}}{{{a}^{4}}}+\frac{{{y}^{2}}}{{{b}^{4}}}+\frac{{{z}^{2}}}{{{c}^{4}}})}^{-\frac{1}{2}}}dS$
其中${{S}_{1}}:z=c\sqrt{1-\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}},(x,y)\in {{D}_{1}}=\{\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}\le 1,x>0,y>0\}$
同时$\sqrt{1+z_{x}^{2}+z_{y}^{2}}=\sqrt{1+{{[\frac{\frac{c}{{{a}^{2}}}x}{\sqrt{1-\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}}}]}^{2}}+{{[\frac{\frac{c}{{{b}^{2}}}y}{\sqrt{1-\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}}}]}^{2}}}$
           $=\frac{c}{z}\sqrt{\frac{{{z}^{2}}}{{{c}^{2}}}+\frac{{{c}^{2}}{{x}^{2}}}{{{a}^{4}}}+\frac{{{c}^{2}}{{y}^{2}}}{{{b}^{4}}}}=\frac{{{c}^{2}}}{z}\sqrt{\frac{{{z}^{2}}}{{{c}^{4}}}+\frac{{{x}^{2}}}{{{a}^{4}}}+\frac{{{y}^{2}}}{{{b}^{4}}}}$
于是$I=8\iint\limits_{{{S}_{1}}}{({{x}^{2}}}+{{y}^{2}}+{{z}^{2}}{{)}^{-\frac{3}{2}}}\cdot {{(\frac{{{x}^{2}}}{{{a}^{4}}}+\frac{{{y}^{2}}}{{{b}^{4}}}+\frac{{{z}^{2}}}{{{c}^{4}}})}^{-\frac{1}{2}}}\cdot \frac{{{c}^{2}}}{z}\sqrt{\frac{{{z}^{2}}}{{{c}^{4}}}+\frac{{{x}^{2}}}{{{a}^{4}}}+\frac{{{y}^{2}}}{{{b}^{4}}}}dxdy$

      $=8{{c}^{2}}\iint_{{{S}_{1}}}{\frac{dxdy}{z\cdot {{({{x}^{2}}+{{y}^{2}}+{{z}^{2}})}^{\frac{3}{2}}}}}$
      $=8c\iint_{{{D}_{1}}}{\frac{dxdy}{\sqrt{1-\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}}\cdot {{[{{x}^{2}}+{{y}^{2}}+(1-\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}})]}^{\frac{3}{2}}}}}$
其中$ {{D}_{1}}=\{\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}\le 1,x>0,y>0\}$
于是设$x=ra\cos \theta ,y=rb\sin \theta ,\theta \in [0,\frac{\pi }{2}],r\in [0,1]$
原式$=8ab\int_{0}^{\frac{\pi }{2}}{d\theta }\int_{0}^{1}{\frac{rdr}{\sqrt{1-{{r}^{2}}}{{[{{r}^{2}}{{a}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{b}^{2}}{{\sin }^{2}}\theta +{{c}^{2}}(1-{{r}^{2}})]}^{\frac{3}{2}}}}}$
   $=4ab\int_{0}^{\frac{\pi }{2}}{d\theta }\int_{0}^{1}{\frac{d{{r}^{2}}}{\sqrt{1-{{r}^{2}}}{{[{{r}^{2}}{{a}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{b}^{2}}{{\sin }^{2}}\theta +{{c}^{2}}(1-{{r}^{2}})]}^{\frac{3}{2}}}}}$
  $\overset{t={{r}^{2}}}{\mathop{=}}\,4ab\int_{0}^{\frac{\pi }{2}}{d\theta }\int_{0}^{1}{\frac{dt}{\sqrt{1-t}{{[t{{a}^{2}}{{\cos }^{2}}\theta +t{{b}^{2}}{{\sin }^{2}}\theta +{{c}^{2}}(1-t)]}^{\frac{3}{2}}}}}$
   $=4ab\int_{0}^{\frac{\pi }{2}}{d\theta }\int_{0}^{1}{\frac{dt}{\sqrt{1-t}{{[t[{{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta -{{c}^{2}}]+{{c}^{2}}]}^{\frac{3}{2}}}}}$
   $=\frac{4ab}{{{c}^{3}}}\int_{0}^{\frac{\pi }{2}}{d\theta }\int_{0}^{1}{\frac{dt}{\sqrt{1-t}{{[t[{{(\frac{a}{c})}^{2}}{{\cos }^{2}}\theta +{{(\frac{b}{c})}^{2}}{{\sin }^{2}}\theta -1]+1]}^{\frac{3}{2}}}}}$
为此,设$S(d)=\int_{0}^{1}{\frac{dt}{\sqrt{1-t}{{(1+dt)}^{\frac{3}{2}}}}}$,其中$d={{(\frac{a}{c})}^{2}}{{\cos }^{2}}\theta +{{(\frac{b}{c})}^{2}}{{\sin }^{2}}\theta -1$
令$h=\sqrt{1-t}$,则$S(d)=2\int_{0}^{1}{\frac{dh}{{{(1+d-d{{h}^{2}})}^{\frac{3}{2}}}}}$
易知:若$d=0$,则$S(0)=2$
若$d>0$,则令$h=\sqrt{\frac{1+d}{d}}\sin \varphi$
于是$S(d)=2\int_{0}^{\arcsin \sqrt{\frac{d}{1+d}}}{\frac{\sqrt{\frac{1+d}{d}}\cos \varphi }{{{[1+d-(1+d){{\sin }^{2}}\varphi ]}^{\frac{3}{2}}}}}d\varphi$
       $=\frac{2}{\sqrt{d}(1+d)}\int_{0}^{\arcsin \sqrt{\frac{d}{1+d}}}{\frac{d\varphi }{{{\cos }^{2}}\varphi }}$
       $=\frac{2}{\sqrt{d}(1+d)}\tan (arcsin\sqrt{\frac{d}{1+d}})$
于是令

$m=\arcsin \sqrt{\frac{d}{1+d}}$,则$\operatorname{sinm}=\sqrt{\frac{d}{1+d}}$
从而  

$\tan (arcsin\sqrt{\frac{d}{1+d}})=\tan m=\sqrt{d}$
即      $S(d)=\frac{2}{1+d}$
同理,若$d<0$
$S(d)=2\int_{0}^{1}{\frac{dh}{{{(1+d+\left| d \right|{{h}^{2}})}^{\frac{3}{2}}}}}$
于是令$k=\sqrt{\frac{1+d}{\left| d \right|}}\tan \varphi$
则$S(d)=2\int_{0}^{\arctan \sqrt{\frac{\left| d \right|}{1+d}}}{\frac{\sqrt{\frac{1+d}{\left| d \right|}}\frac{1}{{{\cos }^{2}}\varphi }}{{{[1+d+(1+d){{\tan }^{2}}\varphi ]}^{\frac{3}{2}}}}}d\varphi$
     $=\frac{2}{\sqrt{\left| d \right|}(1+d)}\int_{0}^{\arctan \sqrt{\frac{\left| d \right|}{1+d}}}{\cos \varphi d\varphi }$
     $=\frac{2}{1+d}$
这里$d$不可能为$-1$,原因是$d={{(\frac{a}{c})}^{2}}{{\cos }^{2}}\theta +{{(\frac{b}{c})}^{2}}{{\sin }^{2}}\theta -1$
综上所述:$S(d)=\frac{2}{1+c}$
于是$S({{(\frac{a}{c})}^{2}}{{\cos }^{2}}\theta +{{(\frac{b}{c})}^{2}}{{\sin }^{2}}\theta -1)=\frac{2}{{{(\frac{a}{c})}^{2}}{{\cos }^{2}}\theta +{{(\frac{b}{c})}^{2}}{{\sin }^{2}}\theta }$
                       $ =\frac{2{{c}^{2}}}{{{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta }$
于是$I=\frac{8ab}{c}\int_{0}^{\frac{\pi }{2}}{\frac{d\theta }{{{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta }}$
    $=\frac{8ab}{c}\int_{0}^{\frac{\pi }{2}}{\frac{1+{{\tan }^{2}}\theta }{{{a}^{2}}+{{b}^{2}}{{\tan }^{2}}\theta }}d\theta$
于是令$v=\tan \theta$
则$I=\frac{8ab}{c}\int_{0}^{+\infty }{\frac{1+{{v}^{2}}}{{{a}^{2}}+{{b}^{2}}{{v}^{2}}}\cdot \frac{1}{1+{{v}^{2}}}}dv=\frac{4\pi }{c}$
法二:解:设

$\left\{\begin{array}{ll} x = a\sin \varphi \cos \theta , \\ y = b\sin \varphi \sin \theta , \\ z = c\cos \varphi . \end{array} \right.$
$0 \le \varphi \le \pi ,0 \le \theta \le 2\pi$


${{x}_{\varphi }}=a\cos \varphi \cos \theta ,{{y}_{\varphi }}=b\cos \varphi \sin \theta ,{{z}_{\varphi }}=-c\sin \varphi
{{x}_{\theta }}=-a\sin \varphi \sin \theta ,{{y}_{\theta }}=b\sin \varphi \cos \theta ,{{z}_{\theta }}=0$
从而

$E={{\cos }^{2}}\varphi ({{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta )+{{c}^{2}}{{\sin }^{2}}\varphi$
$F={{\sin }^{2}}\varphi ({{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta )$
$G=({{b}^{2}}-{{a}^{2}})\sin \varphi \cos \varphi \sin \theta \cos \theta
\sqrt{EF-{{G}^{2}}}=\sin \varphi \sqrt{{{a}^{2}}{{b}^{2}}{{\cos }^{2}}\varphi +{{b}^{2}}{{c}^{2}}{{\sin }^{2}}\varphi {{\cos }^{2}}\theta +{{a}^{2}}{{c}^{2}}{{\sin }^{2}}\varphi {{\sin }^{2}}\theta }$
       $=abc\sin \varphi \sqrt{\frac{{{x}^{2}}}{{{a}^{4}}}+\frac{{{y}^{2}}}{{{b}^{4}}}+\frac{{{z}^{2}}}{{{c}^{4}}}}$
于是

$I=\iint\limits_{0\le \varphi \le \pi ,0\le \theta \le 2\pi }{abc[{{a}^{2}}{{\sin }^{2}}\varphi {{\cos }^{2}}}\theta +{{b}^{2}}{{\sin }^{2}}\varphi {{\sin }^{2}}\theta +{{c}^{2}}{{\cos }^{2}}\varphi {{]}^{-\frac{3}{2}}}\sin \varphi d\varphi d\theta$
于是设

$J=\int_{0}^{\pi }{{{({{a}^{2}}{{\sin }^{2}}\varphi {{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\varphi {{\sin }^{2}}\theta +{{c}^{2}}{{\cos }^{2}}\varphi )}^{-\frac{3}{2}}}\sin \varphi d\varphi }$
$\overset{t=\cos \varphi }{\mathop{=}}\,\int_{-1}^{1}{[({{a}^{2}}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta )(1-{{t}^{2}})+{{c}^{2}}{{t}^{2}}{{]}^{-\frac{3}{2}}}dt$
$=\frac{2}{{{A}^{3}}}\int_{0}^{1}{[1-(\frac{{{A}^{2}}-{{c}^{2}}}{{{A}^{2}}}}){{t}^{2}}{{]}^{-\frac{3}{2}}}dt$
其中$A=\sqrt{{{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta }$
不失一般性,不妨设$a\ge b\ge c$,
于是

${{A}^{2}}={{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta ={{b}^{2}}+({{a}^{2}}-{{b}^{2}}){{\cos }^{2}}\theta \ge {{b}^{2}}\ge {{c}^{2}}$
当且仅当$a=b=c$取等号

(1)若$A=c$,则$a=b=c$,由此可得$I=4\pi$
(2)若$A>c$,则

$J=\frac{2}{{{A}^{2}}\sqrt{{{A}^{2}}-{{c}^{2}}}}\int_{0}^{\frac{\sqrt{{{A}^{2}}-{{c}^{2}}}}{A}}{{{(1-{{s}^{2}})}^{-\frac{3}{2}}}}ds$
$=\frac{2}{{{A}^{2}}\sqrt{{{A}^{2}}-{{c}^{2}}}}\frac{s}{\sqrt{1-{{s}^{2}}}}|_{0}^{\frac{\sqrt{{{A}^{2}}-{{c}^{2}}}}{A}}$

$=\frac{2}{{{A}^{2}}c}$
于是

$I=2ab\int_{0}^{2\pi }{\frac{1}{{{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta }}d\theta$
$=8ab\int_{0}^{\frac{\pi }{2}}{\frac{1}{{{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta }}d\theta$
$\overset{y=\tan \theta }{\mathop{=}}\,8ab\int_{0}^{+\infty }{\frac{dt}{({{a}^{2}}-{{b}^{2}})+{{b}^{2}}(1+{{t}^{2}})}}$

$=8ab\int_{0}^{+\infty }{\frac{dt}{{{a}^{2}}+{{b}^{2}}{{t}^{2}}}}$
$=4\pi$

由(1)(2)可知,$I=4\pi$







157
hylpy1 在职认证  发表于 2019-8-31 22:06:46
天津大学2019年数学分析考研试题
tj13.png

证明:因为$f(x)$在$[a,+\infty )$上可积,所以有

                                  $\forall \xi \in [a,b]\subset [a,+\infty ),$

                      存在常数$I_1,I_2$,使得

                                    $\int_{a}^{\xi }f(x)dx=I_1,\int_{\xi}^{+\infty }f(x)dx=I_2.$

                      由积分第二中值定理(条件),有
                                     $\begin{align*}\int_{a}^{+\infty }f(x)g(x)dx&=\lim_{b\rightarrow +\infty }\int_{a}^{b}f(x)g(x)dx\\\\&=\lim_{b\rightarrow +\infty }(g(a)\int_{a}^{\xi }f(x)dx+g(b)\int_{\xi}^{b}f(x)dx)\\\\&=g(a)I_1+g(b)\lim_{b\rightarrow +\infty }\int_{\xi}^{b}f(x)dx\\\\&=g(a)I_1+g(b)\int_{\xi}^{+\infty }f(x)dx\\\\&=g(a)I_1+g(b)I_2
\end{align*}$

                        又因为$g(x)$有界,故

                                                   $g(a),g(b)\leq M,$

                            因此
                                        $\int_{a}^{+\infty }f(x)g(x)dx=g(a)I_1+g(b)I_2=M(I_1+I_2).$

                              为一有界常数。函数可积。


158
hylpy1 在职认证  发表于 2019-8-31 23:03:21
天津大学2019年数学分析考研试题
tj14.png

        此题想了好久没有做出来,查了几外出处,原来这是笔误题。正确的题应是:

                                            $\sum_{k=1}^{n}kC_n^k(1-x)^{n-k}x^k.$


证明:
                              $\because kC_n^k=nC_{n-1}^{k-1},$

                               $\begin{align*}\therefore \sum_{k=1}^{n}kC_n^k(1-x)^{n-k}x^k&=n\sum_{k=1}^{n}C_{n-1}^{k-1}(1-x)^{n-k}x^k\\\\&=nx\sum_{k=1}^{n}C_{n-1}^{k-1}(1-x)^{n-k}x^{k-1}\\\\&=nx(x+(1-x))^{n-1}\\\\&=nx.
\end{align*}$





159
hylpy1 在职认证  发表于 2019-8-31 23:04:04
天津大学2019年数学分析考研试题
tj15.png

此题没想出来,参见八一大神的解答:
2.png






160
hylpy1 在职认证  发表于 2019-8-31 23:06:01
天津大学2019年数学分析考研试题
tj16.png

证明:由已知条件有

                                    $|f(x)-f(y)|\leq \frac{1}{2}|x-y|,$

             由已知方程有

                                      $x=\frac{1}{\lambda}f(x),$

                    所以推出有
                                      
                                      $|x-y|=\frac{1}{\lambda }|f(x)-f(y)|\leq \frac{1}{2\lambda}|x-y|,$

                  由压缩不动点理论,要使不动点方程有解,则必有

                                          $\frac{1}{2\lambda}< 1,$

                                          $\therefore \lambda > \frac{1}{2}.$




您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 12:09