你好,欢迎来到经管之家 [登录] [注册]

设为首页 | 经管之家首页 | 收藏本站

基于主成分分析及二次回归分析的城市生活垃圾热值建模_硕士论文

发布时间:2014-10-22 来源:人大经济论坛
1. 引言 随着人们经济水平的提高、环保意识的增强、环保法规日益严格和国家垃圾处理产业化政策的实施,垃圾填埋处理的弊端将引起重视、运营费用将大大增加,而垃圾焚烧处理的优势将逐渐呈现出来并最终获得人们的认可。以城市生活垃圾为燃料而建立垃圾电站进行电力生产,很好的实现了生活垃圾的无害化、资源化利用。 而我国的城市生活垃圾成分复杂,用作为燃料时稳定性较差,因此分析垃圾的成分、计算垃圾的热值模型是垃圾焚烧发电的工艺设计和运营管理中必不可少的基础性工作。 因为我国不同地区人们生活习惯及生活条件差异较大,导致城市生活垃圾成分也存在很大的地域性差异,因此,本文以深圳市为例,对深圳市宝安区的生活垃圾采样数据进行分析,并建立其计算模型。 2. 回归分析及主成分分析理论 2.1. 回归分析 回归分析是一种应用极为广泛的数量分析方法。它用于分析事物之间的统计关系,通过回归方程的形式描述和反应这种关系。 2.2. 一般回归模型 如果变量与随机p 变量y 之间存在着相关关系,通常就意味着当x , x ....x 1 2 p x , x ....x取定值后y 便有相应的概率分布与之对应,其概率模型为: = ( , ... ) +e (2-1) 1 2 p y f x x x其中p为称自变量,y 称为因变量, 为自变量的确定性关系,ε表示x , x ....x 1 2 ( , .... ) 1 2 p f x x x随机误差。 2.3. 线性回归模型 回归模型分为线性回归模型和非线性回归模型,线性回归又有一元线性回归和多元线性回归之分。当变量之间的关系是线性关系的模型都称为线性回归模型,否则就称之为非线性回归模型。当概率模型(2-1)中的回归函数为线性函数时,有: = b + b + b +e (2-2) p p y x ... x 0 1 1其中βi 是p+1 个未知参数,β0 称为回归常数,β1...βp 称为回归系数。 2.4. 主成分分析 上述的线性回归模型的应用前提是作为自变量的各指标之间相互独立,即不存在相关性。但由于本文研究的对象是股价的技术指标,而对于实际的收集到得诸多变量在其提出及确定的过程中通常都会存在或多或少的相关性。我们将变量间信息的高度重叠和高度相关称为多重共线性,而这种多重共线性会对线性回归分析的结果产生较大的影响,出现较大的误差。 主成分分析的核心是用较少的相互独立的因子反映原有变量的绝大部分信息。主成份分析的主要思想是:从自变量中提取出新的变量,这些变量是原变量的适当的线性组合,并且互不相关。从这些新变量中,我们选择少数几个变量,它们含有尽可能多的原变量的信息,然后再对这些变量进行回归分析。 3. 模型建立与检验 3.1. 数据来源 本文收集深圳市宝安区不同地点的城市生活垃圾,按照四分法制备样品,对垃圾的物理组成进行了详细的分类,对各成分的含量和含水率进行了精确测定,最后采用煤的发热量测定方法测定热值。分析整理后共得到37 组实验数据,如表3-1(由于数据量较大,只给出部分数据)符号G、PA、PL、TE、GD、W 和LHV 分别表示有机物、纸类、塑料橡胶、纺织物、木竹、含水率和低位热值。 3.2. 全变量线性回归模型 首先我们利用数据表中的全部变量进行回归分析,建立多元线性回归方程,模型的建立过程和各类分析图表在SPSS 统计软件中完成。根据相关性分析,得到简单相关系数分析表如下: 从残差分布直方图可以判断,样本残差基本上均匀的分布在正态分布曲线以内,可以认为样本残差服从标准正态分布。 将表3-1中的数据带入到模型Ⅰ中,得到闭集检验误差为9.77%,说明线性回归方程模拟实际情况的误差较大。分析表3-3中的多重共线性检验,从容忍度和方差膨胀因子看,自变量之间存在多重共线性,影响了线性回归的准确度。
经管之家“学道会”小程序
  • 扫码加入“考研学习笔记群”
推荐阅读
经济学相关文章
标签云
经管之家精彩文章推荐