陈强老师亲授及答疑
高级计量Stata之因果推断
2024年五一上海现场班
占座ing!
新课纲四天专注因果推断, 独家计量男神现场班!
课程信息
培训时间:2024年5月1-4日(四天)
培训地点:上海市(提供交通住宿指南)
授课安排:上午9:00-12:00;下午2:00-5:00;答疑5:00-6:00
→ 授课与答疑均是陈强老师本人
→ 根据缴费顺序安排座位
→ 赠送陈强老师《计量经济学及Stata应用》视频(时长46小时)
授课嘉宾简介
陈强老师,分别于1992年与1995年获得北京大学经济学学士与硕士学位,2007年获美国Northern Illinois University数学硕士与经济学博士学位,现任山东大学经济学院教授,博士生导师。主要研究领域为计量经济学、机器学习、经济史。已发表论文于Oxford Economic Papers (lead article),Economica,Journal of Comparative Economics,StataJournal,《经济学(季刊)》、《世界经济》等国内外期刊。著有畅销教材《高级计量经济学及Stata应用》(第2版,2014),《计量经济学及Stata应用》(2015),《机器学习及R应用》(2020)与《机器学习及Python应用》(2021)。2010年入选教育部新世纪人才支持计划。
课程特色
特色 #1 通过四天心无旁骛的学习,全面而深入地了解高级计量学在因果推断方面的最新方法及Stata案例实操。这是其他短期培训所无法比拟的。
特色 #2 在夯实计量理论基础的同时,迅速将学员们拉到当代计量实证研究的最前沿,使学员们可以先知先觉、决胜未来。
特色 #3 现场班全程由经典教材《高级计量经济学及Stata应用》的作者陈强教授主讲。你或许知道该书因条理清晰、通俗易懂、深入浅出而好评如潮,但只有上过陈强老师课的学生才能体会到,陈老师的现场授课所具有的直指人心之独特魅力,帮助学员立刻进入高级计量的境界,融会贯通,恍然大悟。
课程简介:
本次高级计量Stata之因果推断现场班,将根据多次现场班的反馈进一步完善。在课程内容的设计上,主要指导思想是在较短时间内,将高级计量Stata的因果推断精髓及最新方法,以最通俗生动的语言以及大量的案例交给学员。在夯实计量理论基础的同时,特别注重因果推断的具体应用,迅速将学员们拉到当代计量实证研究的最前沿。
由于学员的基础不同,本课程仅对学员背景做最低要求,只要学员学过本科计量经济学及初级Stata操作即可。因为“大道至简至易”,高级计量与初级计量的本质是一样的,学子们最需要的是能够直指人心地洞明计量原理与操作工具,然后得心应手地用于实战。正如许多学员所说,士别四日,或刮目相看!Now or Never!
培训目的:
掌握高级计量经济学因果推断的核心方法及Stata操作,不再茫然,知其然而知其所以然,迅速成为处理数据及定量分析的高手。
课程特色:
直观地解释高级计量经济学方法,通过案例学习相应的Stata操作,深入浅出地介绍实证分析的精髓。
课程配套资料:
课程PPT、数据集、do文档及相关论文。
课程内容:
第1讲,随机实验与自然实验。
随机实验是实证研究的黄金标准。
内容:随机实验,自然实验,内部有效性,外部有效性,最小二乘法(OLS),二值选择模型(Probit,Logit),非参数估计。
案例:班级规模与学习成绩(Hanushek,1999),种族与就业歧视(Bertrand andMullainathan, 2004),就业经历与未来就业(Pallais, 2014),最低工资与劳动力需求(Card and Krueger, 1994),参军与长期收入(Angrist,1990)。
第2讲,工具变量法。
工具变量法是解决内生性的通用方法。
内容:2SLS,LIML,GMM,弱工具变量,过度识别检验,排他性约束,内生性检验,移动份额IV(BartikIV, Bartik, 1991; Adao et al., 2019;Goldsmith-Pinkham et al., 2020; Borusyak etal., 2022),异质性工具变量法(局部处理效应,LATE)。
案例:出生季度与教育年限(Angrist and Krueger,1991);殖民者死亡率与制度(Acemogluetal., 2001);经济增长与非洲内战(Miguel et al., 2004);国企改革的作用(Groves et al., 1994);警察与犯罪率(Levitt, 1997);科举制对人力资本积累的长期影响(Chen et al., 2020);美国年轻男子的教育回报(Griliches,1976);中国进口对美国制造业就业的冲击(Autor et al., 2013)。
第3讲,匹配估计量。
本讲介绍基于非混杂性(unconfoundedness)的一系列估计方法。
非混杂性意味着,若控制处理前的特征(pretreatmentcharacteristics),则处理变量不再有内生性。
内容:匹配估计,倾向得分匹配(PSM; Rosenbaum and Rubin, 1983; Abadie and Imbens, 2016),回归调整法(regression adjustment;也称结果回归,outcome regression),逆概加权法(inverse probability weighting),双重稳健估计(doublyrobust estimation)。
案例:就业培训的处理效应(LaLonde, 1986; Dehejia and Wahba, 1999)。
第4讲,断点回归。
由于在断点附近存在局部随机分组,故断点回归的效力接近于随机实验,日益为研究者所青睐(Thistlethwaite and Campbell, 1960; Imbens and Kalyanaraman, 2009;Calonicoet al., 2014)。
内容:精确断点回归,模糊断点回归,密度(操纵)检验,稳健性检验。
案例:冬季燃煤取暖与人均寿命(Chen et al., 2013);扶贫政策的效应(Meng, 2013);买房落户与户口价值(Chen et al., 2019);美国参议院选举的在位者优势(Cattaneoetal., 2015)。
第5讲,合成控制法。
在评价某处理地区的政策效应时,将控制地区进行最优的线性组合,以构造合成控制地区进行对比,这是估计处理效应的流行方法(Abadie and Gardeazabal, 2003; Abadie et al., 2010)。
内容:比较案例分析,合成控制法,空间安慰剂检验,时间安慰剂检验,混合安慰剂检验(Chen and Yan, 2023),留一稳健性检验。
案例:马里矣尔船运(Mariel boatlift;Card, 1990);西班牙巴斯克地区恐怖活动的经济后果(Abadie and Gardeazabal, 2003);加州控烟法的成效(Abadieetal., 2010);德国统一的政策效应(Abadie et al., 2015)。
第6讲,回归控制法。
与合成控制法类似,但回归控制法使用回归法来构成反事实的控制地区(Hsiao et al., 2012; Hsiao and Zhou, 2019),比合成控制法更为简便易行。
内容:回归控制法,安慰剂检验,含协变量的回归控制法,分位数控制法(Quantile Control Method; Chen et al., 2023)。
案例:香港回归及与中国内地经济整合的效应(Hsiao et al., 2012);德国统一的政策效应(Abadie etal.,2015);四万亿经济刺激的效应(Ouyang and Peng, 2015);上海与重庆房产税试点的效应(Du and Zhang, 2015);高铁开通的政策效应(Ke et al.,2017);房票政策的房价效应(方诚、陈强,2021)。
第7讲,两期DID。
这是最基本的双重差分法模型,也是理解DID的基石。
内容:差分估计量,双重差分估计量,平行趋势假定(Parallel Trend Assumption, PTA),条件平行趋势假定(ConditionalPTA),双向固定效应模型,PSM-DID(Heckmanet al., 1997, 1998),逆概加权估计(Abadie, 2005),双重稳健估计(Sant’Anna and Zhao,2020)。
案例:伦敦霍乱的自然实验;最低工资立法与劳动力需求(Card and Krueger, 1994),工会成员的工资溢价(union-wage premium)。
第8讲,经典多期DID。
经典多期DID模型包括两组(即处理组与控制组)与两时段(即处理前与处理后),而个体受政策冲击时间均相同;故也称为经典2x2DID。多期DID使得平行趋势假定的检验成为可能,且可使用事件分析法(event study)考察动态处理效应。
内容:平行趋势图,平行趋势检验,安慰剂检验,分组异质性,多期PSM-DID。
案例:就业培训的政策效应(Ashenfelter, 1978);漕粮海运与大运河沿线叛乱(Cao andChen, 2022);人工智能翻译与国际贸易(Brynjolfssonet al., 2019)。
第9讲,交叠DID。
在交叠DID(Staggered DID)模型中,个体受政策处理时间不尽相同,但处理状态不可逆(irreversibletreatment),即处理变量只能由0变为1,而不能从1变为0(即不允许政策退出),也称为“吸入式处理”(absorbing treatment)。在此框架下,若存在异质性处理效应(处理效应随个体或时间而异),则双向固定效应模型一般会有偏差,需使用异质性稳健的估计量,即在异质性效应情况下依然成立的估计方法。
内容:静态回归系数的Bacon分解(Goodman-Bacon, 2021),动态回归系数的Sun-Abraham分解(Sun and Abraham, 2021),交互加权估计(Interaction Weighted Estimation; Sun and Abraham, 2021),CSDID估计(Callaway and Sant’Anna, 2021,含结果回归、逆概加权估计,默认为双重稳健估计),二阶段DID(DID2S; Gardner, 2022),扩展TWFE估计(Wooldridge,2021),堆叠回归(Stacked Regression; Cengizet al., 2019)。
案例:银行管制放松与收入分配(Beck et al., 2010);住院治疗的经济后果(Sun andAbraham,2021);最低工资对青少年就业的影响(Callaway and Sant’Anna,2021);最低工资对低薪岗位的影响(Cengiz et al., 2019)。
第10讲,一般DID与连续DID。
在一般DID(General DID)模型中,个体受政策处理时间不尽相同,且处理状态可逆(reversibletreatment),即允许政策退出(处理变量可由1变为0)。在连续DID模型中,有时所有个体都受到处理,但政策冲击力度不同,可将处理变量视为连续变量(continuoustreatment)。
内容:一般DID的估计方法,包括即时处理效应估计(DIDm; de Chaisemartin andd'Haultfœuille, 2020),面板匹配估计(Penal Match; Imai etal.,2019),插补估计量(Imputation Estimator; Borusyak et al.,2022),反事实估计量(Liu et al., 2022),连续DID的估计方法(Callaway et al., 2021)。
案例:新闻报纸与总统选举投票率(Gentzkow et al., 2011);央地执政党异同与央地拨款(Liuetal., 2022);茶叶价格与性别比例(Qian, 2008);废除科举与革命起义(Bai and Jia, 2016)。
第11讲,DDD与合成DID。
如果平行趋势假定不成立,一种解决方法是同时使用两个控制组,即三重差分法(DDD; Gruber, 1994; Olden and Moen, 2022)。另一解决方法是,对控制组个体进行加权,使得加权后的数据满足平行趋势假定,即合成双重差分法(synthetic DID; Arkhangelsky et al., 2022)。
内容:DDD模型与识别条件,合成DID的模型与估计。
案例:将生育纳入雇主提供医保的政策效应(Gruber, 1994);加州控烟法的成效(Abadie et al., 2010);女性议员与孕产妇死亡率(Bhalotra et al., 2022)。
第12讲,队列DID(Cohort DID)。
对于横截面的微观数据,如果依时间(比如出生年份)定义的队列或组群(cohorts)受到政策冲击时间有先后之别,则可考虑使用队列DID。
内容:队列DID的模型设定,平行趋势检验。
案例:印尼校园建设与教育投资回报(Duflo, 2001),知青下乡与农村教育回报(Chen et al., 2020)。
课程费用:
5200元 /4800元(学生价优惠价仅适用于全日制在读本科和硕士)
提供电子版发票及配套通知,纸质版结业证书
优惠信息:
JG学术老学员9折优惠;
同一单位3-5人同时报名9折优惠;
同一单位6人以上同时报名8折优惠;
以上优惠与学生价均不叠加。
报名流程:
1. 点击“https://www.peixun.net/main.php?mod=buy&cid=271”,在线提交报名信息;
2. 经管之家论坛账号登录后提单支付;
3. 确认发票信息,2个工作日发至邮箱;
4. 开课前一周发送资料及上课事宜。
PS:如需电子版开课通知对公转账,请与尹老师联系↓
报名咨询:
尹老师
电话:13321178792
QQ:42884447
WeChat:JGxueshu