1284 1

[宏观经济学流派] 机器学习和科学计算的python书籍 [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2021-10-14
最后登录
2021-10-14

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
研究生阶段学习机器学习,正在学习python,掌握了一定的基础语法,开始想直接针对机器学习和科学计算这部分学习python,请问有推荐的书和软件吗,原来用的pycharm。谢谢大家!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:python 科学计算 机器学习 CHARM Harm

Michael Jordan曾推荐过一份机器学习入门书单,并附上了推荐理由。虽然教科书不是本访谈的讨论对象,但是我还是把它们列出来。如果有同学想要构建机器学习的专业知识体系而不是开阔思维,那最好从以下这些书(或类似的书)着手。Frequentist StatisticsCasella,
G. and Berger,
R.L. (2001).“Statistical Inference” Duxbury Press.—Intermediate-level statistics book.Ferguson,
T. (1996). “A Course in LargeSample Theory” Chapman & Hall/CRC.—For a slightly more advanced book that’squite clear on mathematical techniques.Lehmann,
E. (2004). “Elements ofLarge-Sample Theory” Springer.—About asymptotics which is a good startingplace.Vaart,
A.W. van der (1998). “AsymptoticStatistics” Cambridge.—A book that shows how many ideas in inference (Mestimation,the bootstrap, semi-parametrics, etc) repose on top of empirical processtheory.Tsybakov, Alexandre
B. (2008)“Introduction to Nonparametric Estimation” Springer.—Tools for obtaining lowerbounds on estimators.
B. Efron (2010) “Large-Scale Inference:Empirical Bayes Methods for Estimation, Testing, and Prediction” Cambridge,.—Athought-provoking book.Bayesian StatisticsGelman,
A. et al. (2003). “BayesianData Analysis” Chapman & Hall/CRC.—About Bayesian.Robert,
C. and Casella,
G. (2005).“Monte Carlo Statistical Methods” Springer.—about Bayesian computation.Probability TheoryGrimmett,
G. and Stirzaker,
D. (2001).“Probability and Random Processes” Oxford.—Intermediate-level probability book.Pollard,
D. (2001). “A User’s Guide toMeasure Theoretic Probability” Cambridge.—More advanced level probability book.Durrett,
R. (2005). “Probability:Theory and Examples” Duxbury.—Standard advanced probability book.OptimizationBertsimas,
D. and Tsitsiklis,
J.(1997). “Introduction to Linear Optimization” Athena.—A good starting book onlinear optimization that will prepare you for convex optimization.Boyd,
S. and Vandenberghe,
L. (2004).“Convex Optimization” Cambridge.
Y. Nesterov and Iu
E. Nesterov (2003).“Introductory Lectures on Convex Optimization” Springer.—A start to understandlower bounds in optimization.Linear AlgebraGolub,
G., and Van Loan,
C. (1996).“Matrix Computations” Johns Hopkins.—Getting a full understanding of algorithmic linear algebra is also important.Information TheoryCover,
T. and Thomas,
J. “Elements ofInformation Theory” Wiley.—Classic information theory.Functional AnalysisKreyszig,
E. (1989). “IntroductoryFunctional Analysis with Applications” Wiley.—Functional analysis isessentially linear algebra in infinite dimensions, and it’s necessary forkernel methods, for nonparametric Bayesian methods, and for various othertopics.大牛Ian Goodfellow也推荐过几本机器学习教科书,其中当然包括他自己写的那本《DeepLearning》

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 20:39