金融资产波动性特征研究回顾
Bachelier(1900)运用赌博的方法研究证券价格的特征,提出证券价格遵循随机游走,即布朗运动(Brownian Motion)。从此,对金融资产价格形成机制的研究成为整个金融学的焦点,产生了一系列辉煌的理论:市场有效性理论,市场均衡理论,资本资产定价理论以及期权定价理论等。在金融市场上,投资者需要估计资产的风险期望收益率,银行和其他金融机构要确保资产价值不跌破破产下限,这些评估都离不开对资产收益率波动性的准确度量和预测。波动率的估计模型在过去的几十年里已成为金融市场计量经济学中最为活跃的研究领域之一。
一、金融资产波动率的估计
波动率通常用样本的标准差或方差来表示。样本标准差是描述样本二阶矩特征的统计量,表示样本的离中趋势,可作为风险的评价尺度(Markowitz,1952),并被广泛地运用到金融资产的风险评价中。
但是,研究发现在小样本情况下样本矩的统计特征使得利用样本标准差无法得到对真实二阶矩的精确估计。虽然样本方差是总体方差的无偏估计,但是根据。Jenso不等式,样本方差的平方根却是对总体标准差的有偏估计(Stephen&Figlewski,1997)。为了更好地描述波动率,Mat-kowitz(1991)定义了下方差(semi—variance)作为波动率的度量工具;Ding、Granger&:Engle(1993)建议直接使用绝对值收益来度量波动率;Fung&Hsieh(1991),Andersen& Bolleslev(1998)指出利用Merton(1980)提出的实际波动率能够更好地刻画日内数据的波动特性;Yu& Bluhm(2000),Hol&Koopman(2002)对多种波动模型进行了比较,指出Black—Scholes模型中的隐含波动率是对股指波动的有效度量。
传统投资理论假设收益率序列独立同分布,标准差服从正态分布。从Markwitz的均值一方差分析,Sharpe的资本资产定价模型(CAPM),Merton的连续跨期投资模型(ICAPM),到Black—Scholes期权定价公式,都是以此为分析基础的。大量实证研究发现,在实际的金融市场上大部分金融变量的标准差具有一些与正态假设不相符的特征,如异方差性和集聚现象等。经过多年来的大量研究,针对波动率的估计模型已有了很大的发展,其中包括:自回归移动平均模型(ARMA),自回归条件异方差(ARCH)族模型,随机波动率模型(stoehastic volatility,sV),Switch—Regime模型等等。Engle(1982)提出的ARCH模型以及Taylor(1986)提出的sV模型,被认为是最集中反映了金融数据时间序列方差波动特点的模型,成为现代经济计量学研究的重点。
二、金融资产波动的主要特征
近20年的实证研究对价格波动的布朗运动模型和有效市场假设提出了强有力的挑战,比如日历效应、周内效应、盈利公告效应、规模效应以及反向投资策略等等。由于投资者心理因素差异,对信息的消化与确认不均等,收益率的波动呈现非均衡状态,表现出如下主要特征 1)收益率的分布表现为尖峰厚尾性(fat tails,excess kurtosis);(2)波动的时变性(time—varying volatility)和集聚性(volatility clus—tering);(3)长期记忆性(long memory);(4)不同资产或者不同的市场之间的波动存在溢出效应(spill—over effects);(5)杠杆效应(leverage effects)。
(一)尖峰厚尾性
传统投资理论假设金融资产收益率服从正态分布,但Mandlbrot(1960,1961,1963)发现资本市场收益率服从稳态levy分布,表现出尖峰厚尾的特征。
Alexander(1961)在描绘股票市场收益率的密度函数时注意到在均值附近的点比正态分布预测的要高得多,其分布的尾部比正态分布肥胖,分布的四阶矩大于3。大量的实证研究同样表明,尖峰厚尾特征并不仅仅是股票市场特有的现象,对其他金融资产也表现出同样的特性(Peters,1991)。
由于正态分布假设不完全吻合经济和金融资料的经验研究结果,于是许多经济学家尝试对模型的误差项的分布做出各种不同的假设,一种是假设股票收益分布应服从稳态Levy分布。Mandlbrot(1960,1961,1963),Peters(1996),:Mantegna&Stanlev(1995).Farmer(1999),Gopikrishnan et al.(1999,2000),Bam berg&Doffleitner(2001)都对金融资产波动的稳态levy分布做了相应的研究。另一类假设是使用混合分布对已有数据进行分布模型的估计。例如用学生氏t分布替代正态分布(Bollerslev,1987),正态一泊松混合分布(Jorion,1988),幂指数分布(Raillie& Bolleslev,1989),正态一对数正态混合分布(Hsieh.1989),扩展的指数分布(Nelson,1990)等。IJnden (2001)发现用指数分布和正态分布构成的Laplace分布在刻画股票收益时明显优于正态分布,而且Laplace分布具有的几何稳定性,即如果日收益服从Laplace分布,那么周收益、月收益也同样服从Laplaee分布。
显著的尖峰厚尾状态几乎在任意时间标度上都存在(几秒到几个月),而且时间标度取的越短,这种形态越显著。Anderson&.Bollerslev(1998)发现随着数据频率的增加,时间序列的峰度也是随之增加的,当数据频率取到分钟数据时,峰度就已经超过100。
在较低频率的数据中,GARCH模型是可以刻画一些峰度较大的数据特征的,但如果峰度达到了100以上,那GARCH模型就远远不能刻画。很多学者建议利用sV模型来刻画尖峰厚尾性,实证研究也表明SV模型对金融时间序列尖峰厚尾性的刻画能力要高于GARCH模型。Liesenfeld&Jung(21000)研究了SV模型的sV—t与sv-GED)假设,并与sv normal假设进行了比较,结果表明,这两种假设能较好地描述序列的“尖峰厚尾”特征。



雷达卡




京公网安备 11010802022788号







