摘要翻译:
局部对称簇的$L^2$-上同调的拓扑解释是它的Baily-Borel Satake紧致的交同调。在本文中,我们观察到即使没有Hermitian假设,算术商的$l^p$-上同调对于$p$有限且足够大,也与它的还原Borel-Serre紧致的普通上同调同构。利用这一点推广了Mumford关于齐次向量丛及其不变Chern形式和丛的正则推广的一个定理;然而,在这里,我们指的是任何算术商的约化Borel-Serre紧致的规范推广。为此,我们系统地讨论了分层向量丛和Chern类
---
英文标题:
《On the reductive Borel-Serre compactification: $L^p$-cohomology of
arithmetic groups (for large $p$)》
---
作者:
Steven Zucker
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
The $L^2$-cohomology of a locally symmetric variety is known to have the topological interpretation as the intersection homology of its Baily-Borel Satake compactification. In this article, we observe that even without the Hermitian hypothesis, the $L^p$-cohomology of an arithmetic quotient, for $p$ finite and sufficiently large, is isomorphic to the ordinary cohomology of its reductive Borel-Serre compactification. We use this to generalize a theorem of Mumford concerning homogeneous vector bundles, their invariant Chern forms and the canonical extensions of the bundles; here, though, we are referring to canonical extensions to the reductive Borel-Serre compactification of any arithmetic quotient. To achieve that, we give a systematic discussion of vector bundles and Chern classes on stratified
---
PDF链接:
https://arxiv.org/pdf/0704.1335


雷达卡



京公网安备 11010802022788号







