楼主: 能者818
252 0

[电气工程与系统科学] 中的扩展Kalman滤波增强Hilbert-Huang变换 振荡检测 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
37.8378
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-3 18:45:30 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
Hilbert-Huang变换(HHT)以其处理动态信号的能力和提供频率、阻尼、振幅等瞬时特性的能力,在电力系统分析中得到了广泛的关注。然而,它的缺点,包括模式混合和末端效应,与它的优点一样显著。本文给出了一种扩展卡尔曼滤波(EKF)方法的初步结果,以增强HHT并有望克服这些缺点。该建议首先使用经验模式分解去除信号中的动态直流分量。然后应用EKF模型提取瞬时系数。利用模拟和实际低频振荡数据的数值结果表明,该方案可以通过适当选择模态数量来克服模态混合和端点效应。
---
英文标题:
《An Extended Kalman Filter Enhanced Hilbert-Huang Transform in
  Oscillation Detection》
---
作者:
Zhe Yu, Di Shi, Haifeng Li, Yishen Wang, Zhehan Yi, Zhiwei Wang
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics        数学
二级分类:Numerical Analysis        数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--

---
英文摘要:
  Hilbert-Huang transform (HHT) has drawn great attention in power system analysis due to its capability to deal with dynamic signal and provide instantaneous characteristics such as frequency, damping, and amplitudes. However, its shortcomings, including mode mixing and end effects, are as significant as its advantages. A preliminary result of an extended Kalman filter (EKF) method to enhance HHT and hopefully to overcome these disadvantages is presented in this paper. The proposal first removes dynamic DC components in signals using empirical mode decomposition. Then an EKF model is applied to extract instant coefficients. Numerical results using simulated and real-world low-frequency oscillation data suggest the proposal can help to overcome the mode mixing and end effects with a properly chosen number of modes.
---
PDF链接:
https://arxiv.org/pdf/1711.04644
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:hilbert kalman Hil LMA ert Kalman 振荡 克服 利用 dynamic

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 12:39