楼主: 大多数88
388 0

[电气工程与系统科学] 基于标准时间规整的歌唱嗓音校正 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
71.3197
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-6 17:45:50 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
具有表现力的歌唱嗓音校正是一个吸引人但具有挑战性的问题。一种鲁棒的同步两个唱歌录音的时间扭曲算法可以提供一个有希望的解决方案。因此,我们建议通过规范时间规整(CTW)来解决这个问题,它将业余演唱录音与专业演唱录音对齐。给定对准信息生成新的基音轮廓,并通过声码器合成回基音校正的歌唱。客观评价表明,CTW算法具有较强的抗变距和时间伸展效应的能力,主观测试表明,CTW算法优于DTW算法和商业自动调谐软件。最后,我们在一个实际的,真实世界的场景中证明了所提出的方法的适用性。
---
英文标题:
《Singing voice correction using canonical time warping》
---
作者:
Yin-Jyun Luo, Ming-Tso Chen, Tai-Shih Chi, Li Su
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  Expressive singing voice correction is an appealing but challenging problem. A robust time-warping algorithm which synchronizes two singing recordings can provide a promising solution. We thereby propose to address the problem by canonical time warping (CTW) which aligns amateur singing recordings to professional ones. A new pitch contour is generated given the alignment information, and a pitch-corrected singing is synthesized back through the vocoder. The objective evaluation shows that CTW is robust against pitch-shifting and time-stretching effects, and the subjective test demonstrates that CTW prevails the other methods including DTW and the commercial auto-tuning software. Finally, we demonstrate the applicability of the proposed method in a practical, real-world scenario.
---
PDF链接:
https://arxiv.org/pdf/1711.086
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:标准时 Architecture Professional Segmentation Modification 适用性 方法 singing robust CTW

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-2 15:19