摘要翻译:
我们发展了一种新的修补形式,它比以前在曲线函数场的逆伽罗瓦理论中使用的修补形式具有深远的意义和更基本的意义。我们方法的一个关键点是使用域和向量空间,而不是环和模。在给出了这种修补形式的独立发展之后,我们获得了对其他结构的应用,如Brauer群和微分模。
---
英文标题:
《Patching over fields》
---
作者:
David Harbater (U. Pennsylvania), Julia Hartmann (U. Heidelberg)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Rings and Algebras 环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
---
英文摘要:
We develop a new form of patching that is both far-reaching and more elementary than the previous versions that have been used in inverse Galois theory for function fields of curves. A key point of our approach is to work with fields and vector spaces, rather than rings and modules. After presenting a self-contained development of this form of patching, we obtain applications to other structures such as Brauer groups and differential modules.
---
PDF链接:
https://arxiv.org/pdf/0710.1392


雷达卡



京公网安备 11010802022788号







