摘要翻译:
本文利用Voevodsky的H-拓扑,将可能奇异的复变簇X的代数de Rham上同调重新解释为X上光滑格式的sheaf上同调。我们的结果也推广到代数de Rham复形。我们的主要技术是将超覆盖的Cech上同调推广到单纯预束的任意局部非环纤维。
---
英文标题:
《Local acyclic fibrations and the de Rham complex》
---
作者:
Ben Lee
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
We reinterpret algebraic de Rham cohomology for a possibly singular complex variety X as sheaf cohomology in the site of smooth schemes over X with Voevodsky's h-topology. Our results extend to the algebraic de Rham complex as well. Our main technique is to extend Cech cohomology of hypercovers to arbitrary local acyclic fibrations of simplicial presheaves.
---
PDF链接:
https://arxiv.org/pdf/0710.3147


雷达卡



京公网安备 11010802022788号







