摘要翻译:
这是一篇关于曲面奇点上Cohen-Macaulay模性质的综述文章。我们讨论了关于Macaulay化函子,单、商和极小椭圆奇点上的自反模,几何和代数McKay对应的各种结果。最后,我们描述了非孤立奇点A_\infty$和D_\infty$上的不可分解Cohen-Macaulay模对应的矩阵分解。
---
英文标题:
《Maximal Cohen-Macaulay modules over surface singularities》
---
作者:
Igor Burban, Yuriy Drozd
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
This is a survey article about properties of Cohen-Macaulay modules over surface singularities. We discuss various results on the Macaulayfication functor, reflexive modules over simple, quotient and minimally elliptic singularities, geometric and algebraic McKay Correspondence. Finally, we describe matrix factorizations corresponding to the indecomposable Cohen-Macaulay modules over the non-isolated singularities $A_\infty$ and $D_\infty$.
---
PDF链接:
https://arxiv.org/pdf/0803.0117


雷达卡



京公网安备 11010802022788号







