摘要翻译:
利用作者1980、1981年的方法,定义了含有算术双曲反射群的基场的数场的一些显式有限集,并得到了它们的次数(在Q上)的好界。例如,维数至少为6的任意算术双曲反射群的地面场的度以56为界。这些结果对进一步分类具有重要意义。我们还提出了一个关于算术双曲反射群个数有限性的镜像对称猜想,这是最近完全一般性地建立起来的。
---
英文标题:
《On ground fields of arithmetic hyperbolic reflection groups》
---
作者:
Viacheslav V. Nikulin
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
---
英文摘要:
Using authors's methods of 1980, 1981, some explicit finite sets of number fields containing ground fields of arithmetic hyperbolic reflection groups are defined, and good bounds of their degrees (over Q) are obtained. For example, degree of the ground field of any arithmetic hyperbolic reflection group in dimension at least 6 is bounded by 56. These results could be important for further classification. We also formulate a mirror symmetric conjecture to finiteness of the number of arithmetic hyperbolic reflection groups which was established in full generality recently.
---
PDF链接:
https://arxiv.org/pdf/0708.3991


雷达卡



京公网安备 11010802022788号







