摘要翻译:
时间序列预测广泛应用于医学、环境和经济等领域的日常统计应用。本文提出了基于专家组合的非参数预测策略,并证明了这些策略在最小条件下的普遍一致性。我们对真实数据集进行了深入的分析,并表明这些非参数策略更灵活,更快速,在归一化累积预测误差方面通常优于ARMA方法。
---
英文标题:
《Nonparametric sequential prediction of time series》
---
作者:
G\'erard Biau, Kevin Bleakley, L\'aszl\'o Gy\"orfi and Gy\"orgy
Ottucs\'ak
---
最新提交年份:
2008
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
Time series prediction covers a vast field of every-day statistical applications in medical, environmental and economic domains. In this paper we develop nonparametric prediction strategies based on the combination of a set of 'experts' and show the universal consistency of these strategies under a minimum of conditions. We perform an in-depth analysis of real-world data sets and show that these nonparametric strategies are more flexible, faster and generally outperform ARMA methods in terms of normalized cumulative prediction error.
---
PDF链接:
https://arxiv.org/pdf/801.0327


雷达卡



京公网安备 11010802022788号







