楼主: 可人4
907 0

[电气工程与系统科学] 基于拉格朗日规划神经网络的鲁棒实时椭圆拟合 网络与局部竞争算法 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.1643
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-29 14:50:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
给定一组二维散射点(通常是从边缘检测过程中获得的),椭圆拟合的目的是构造一个最适合于所收集的观测数据的椭圆方程。然而,由于边缘检测的不完善,一些散射点可能包含离群点。针对这一问题,提出了一种基于拉格朗日规划神经网络(LPNN)和局部竞争算法(LCA)的鲁棒实时椭圆拟合方法。首先,为了缓解这些异常值的影响,将拟合问题转化为目标函数为L1范数或L0范数项的非光滑约束优化问题。这是因为与一些传统椭圆拟合模型中的L2范数相比,P<2的LP范数对异常值的敏感性较低。然后,应用LPNN实时求解该优化问题。针对LPNN模型不能处理目标中不可微项的问题,引入了LCA的概念,并将其与LPNN框架相结合。仿真和实验结果表明,本文提出的椭圆拟合方法优于现有的几种算法。
---
英文标题:
《Robust Real-time Ellipse Fitting Based on Lagrange Programming Neural
  Network and Locally Competitive Algorithm》
---
作者:
Hao Wang, Chi-Sing Leung, Hing Cheung So, Junli Liang, Ruibin Feng,
  and Zifa Han
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--

---
英文摘要:
  Given a set of 2-dimensional (2-D) scattering points, which are usually obtained from the edge detection process, the aim of ellipse fitting is to construct an elliptic equation that best fits the collected observations. However, some of the scattering points may contain outliers due to imperfect edge detection. To address this issue, we devise a robust real-time ellipse fitting approach based on two kinds of analog neural network, Lagrange programming neural network (LPNN) and locally competitive algorithm (LCA). First, to alleviate the influence of these outliers, the fitting task is formulated as a nonsmooth constrained optimization problem in which the objective function is either an l1-norm or l0-norm term. It is because compared with the l2-norm in some traditional ellipse fitting models, the lp-norm with p<2 is less sensitive to outliers. Then, to calculate a real-time solution of this optimization problem, LPNN is applied. As the LPNN model cannot handle the non-differentiable term in its objective, the concept of LCA is introduced and combined with the LPNN framework. Simulation and experimental results show that the proposed ellipse fitting approach is superior to several state-of-the-art algorithms.
---
PDF链接:
https://arxiv.org/pdf/1806.00004
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:拉格朗日 神经网络 拉格朗 神经网 目标函数 time outliers 边缘 优化 椭圆

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-28 15:08