摘要翻译:
我们定义了一个单纯范畴,称为导出流形范畴。它包含光滑流形范畴作为一个全离散子范畴,并且在流形上取任意交点时是闭的。导出流形是由欧氏空间上光滑函数的同伦零集拼接而成的具有局部C^\infty$-环的空间。我们证明了导出流形具有稳定的正规丛,并且可以嵌入到欧氏空间中。我们定义了一个上同调理论,称为导出协边,并用Pontrjagin-Thom论元证明了导出协边理论与经典协边理论是同构的。这使得我们可以为所有派生流形定义共边的基本类。特别地,在我们的理论中,子流形$a,B\子集X$的交集$a\cap B$存在于范畴层次上,即使子流形不是横向的,也存在杯积公式$$[a]\smile[B]=[a\cap B]$$。因此,我们可以把导出流形理论看作是交集理论的{\em范畴}。
---
英文标题:
《Derived Smooth Manifolds》
---
作者:
David I. Spivak
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Category Theory 范畴理论
分类描述:Enriched categories, topoi, abelian categories, monoidal categories, homological algebra
丰富范畴,topoi,abelian范畴,monoidal范畴,同调代数
--
---
英文摘要:
We define a simplicial category called the category of derived manifolds. It contains the category of smooth manifolds as a full discrete subcategory, and it is closed under taking arbitrary intersections in a manifold. A derived manifold is a space together with a sheaf of local $C^\infty$-rings that is obtained by patching together homotopy zero-sets of smooth functions on Euclidean spaces. We show that derived manifolds come equipped with a stable normal bundle and can be imbedded into Euclidean space. We define a cohomology theory called derived cobordism, and use a Pontrjagin-Thom argument to show that the derived cobordism theory is isomorphic to the classical cobordism theory. This allows us to define fundamental classes in cobordism for all derived manifolds. In particular, the intersection $A\cap B$ of submanifolds $A,B\subset X$ exists on the categorical level in our theory, and a cup product formula $$[A]\smile[B]=[A\cap B]$$ holds, even if the submanifolds are not transverse. One can thus consider the theory of derived manifolds as a {\em categorification} of intersection theory.
---
PDF链接:
https://arxiv.org/pdf/0810.5174


雷达卡



京公网安备 11010802022788号







