楼主: mingdashike22
458 0

[电气工程与系统科学] 放大器物理在潜艇容量最大化中的重要性 链接 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8816
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-4-3 11:55:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
由于放大器噪声和克尔非线性,海底传输电缆的吞吐量已接近基本极限。超长海底链路的能量限制加剧了这一问题,因为每根光纤的吞吐量进一步受到海底光放大器可用功率的限制。最近的工作已经研究了如何使用更多的空间维度来减轻这些限制。在本文中,我们解决了如何最优地使用每个空间维度的基本问题。具体来说,我们讨论了如何优化信道功率分配,以使信息论容量在一个电功率约束下最大化。我们的公式考虑了放大器物理、克尔非线性和馈电约束。虽然最近的研究假设光放大器工作在深度饱和下,即功率转换效率(PCE)较高,但我们表明,在给定功率约束下,工作在较不饱和的情况下,即PCE较低,可以支持更宽的带宽和更多的空间维度,从而最大限度地提高容量。与最近提出的大容量系统的理论容量相比,这种设计策略将潜艇链路的容量提高了约70%。
---
英文标题:
《Importance of Amplifier Physics in Maximizing the Capacity of Submarine
  Links》
---
作者:
Jose Krause Perin, Joseph M. Kahn, John D. Downie, Jason Hurley, and
  Kevin Bennett
---
最新提交年份:
2019
---
分类信息:

一级分类:Physics        物理学
二级分类:Applied Physics        应用物理学
分类描述:Applications of physics to new technology, including electronic devices, optics, photonics, microwaves, spintronics, advanced materials, metamaterials, nanotechnology, and energy sciences.
物理学在新技术中的应用,包括电子器件、光学、光子学、微波、自旋电子学、先进材料、超材料、纳米技术和能源科学。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Physics        物理学
二级分类:Optics        光学
分类描述:Adaptive optics. Astronomical optics. Atmospheric optics. Biomedical optics. Cardinal points. Collimation. Doppler effect. Fiber optics. Fourier optics. Geometrical optics (Gradient index optics. Holography. Infrared optics. Integrated optics. Laser applications. Laser optical systems. Lasers. Light amplification. Light diffraction. Luminescence. Microoptics. Nano optics. Ocean optics. Optical computing. Optical devices. Optical imaging. Optical materials. Optical metrology. Optical microscopy. Optical properties. Optical signal processing. Optical testing techniques. Optical wave propagation. Paraxial optics. Photoabsorption. Photoexcitations. Physical optics. Physiological optics. Quantum optics. Segmented optics. Spectra. Statistical optics. Surface optics. Ultrafast optics. Wave optics. X-ray optics.
自适应光学。天文光学。大气光学。生物医学光学。基本点。准直。多普勒效应。纤维光学。傅里叶光学。几何光学(梯度折射率光学、全息术、红外光学、集成光学、激光应用、激光光学系统、激光、光放大、光衍射、发光、微光学、纳米光学、海洋光学、光学计算、光学器件、光学成像、光学材料、光学计量学、光学显微镜、光学特性、光学信号处理、光学测试技术、光波传播、傍轴光学、光吸收、光激发、物理光学、生理光学、量子光学、分段光学、光谱、统计光学、表面光学、超快光学、波动光学、X射线光学。
--

---
英文摘要:
  The throughput of submarine transport cables is approaching fundamental limits imposed by amplifier noise and Kerr nonlinearity. Energy constraints in ultra-long submarine links exacerbate this problem, as the throughput per fiber is further limited by the electrical power available to the undersea optical amplifiers. Recent works have studied how employing more spatial dimensions can mitigate these limitations. In this paper, we address the fundamental question of how to optimally use each spatial dimension. Specifically, we discuss how to optimize the channel power allocation in order to maximize the information-theoretic capacity under an electrical power constraint. Our formulation accounts for amplifier physics, Kerr nonlinearity, and power feed constraints. Whereas recent works assume the optical amplifiers operate in deep saturation, where power-conversion efficiency (PCE) is high, we show that given a power constraint, operating in a less saturated regime, where PCE is lower, supports a wider bandwidth and a larger number of spatial dimensions, thereby maximizing capacity. This design strategy increases the capacity of submarine links by about 70% compared to the theoretical capacity of a recently proposed high-capacity system.
---
PDF链接:
https://arxiv.org/pdf/1803.07905
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:放大器 最大化 重要性 Applications Optimization 提高 带宽 nonlinearity 基本 amplifier

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-6 13:30