摘要翻译:
由于迷信,带有理想字符组合的车牌在中国非常受欢迎,在政府举办的拍卖中,价格可以达到数百万美元。尽管涉及的赌注很高,但基本上没有试图提供车牌的价格估计。我们提出了一个端到端的神经网络模型,同时预测拍卖价格,给出价格分布,并产生潜在的特征向量。虽然我们认为这两种类型的神经网络体系结构都优于简单的机器学习方法,但在可比的训练时间或模型复杂性方面,卷积网络优于递归网络。由此产生的模型为我们的在线价格估计器和搜索引擎提供了动力。
---
英文标题:
《Predicting Auction Price of Vehicle License Plate with Deep Residual
Learning》
---
作者:
Vinci Chow
---
最新提交年份:
2019
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
英文摘要:
Due to superstition, license plates with desirable combinations of characters are highly sought after in China, fetching prices that can reach into the millions in government-held auctions. Despite the high stakes involved, there has been essentially no attempt to provide price estimates for license plates. We present an end-to-end neural network model that simultaneously predict the auction price, gives the distribution of prices and produces latent feature vectors. While both types of neural network architectures we consider outperform simpler machine learning methods, convolutional networks outperform recurrent networks for comparable training time or model complexity. The resulting model powers our online price estimator and search engine.
---
PDF链接:
https://arxiv.org/pdf/1910.04879


雷达卡



京公网安备 11010802022788号







