摘要翻译:
我们考虑了一个在基片上运动的$n$标记随机步行者群体,并且在接触时在步行者之间有一个跳跃的激发。在时间$t$处携带激励的walker的标号$\Mathcal{X}(t)$可以看作是一个随机过程,其中跃迁概率本身也是一个随机过程。通过映射到两个更简单的过程,可以在长时间和低walkers密度的限制下计算出描述$\mathcal{X}(t)$的量。并与数值模拟结果进行了比较。考虑了扩散基底的几种不同拓扑结构。
---
英文标题:
《Random walk on a population of random walkers》
---
作者:
E. Agliari, R. Burioni, D. Cassi, F.M. Neri
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We consider a population of $N$ labeled random walkers moving on a substrate, and an excitation jumping among the walkers upon contact. The label $\mathcal{X}(t)$ of the walker carrying the excitation at time $t$ can be viewed as a stochastic process, where the transition probabilities are a stochastic process themselves. Upon mapping onto two simpler processes, the quantities characterizing $\mathcal{X}(t)$ can be calculated in the limit of long times and low walkers density. The results are compared with numerical simulations. Several different topologies for the substrate underlying diffusion are considered.
---
PDF链接:
https://arxiv.org/pdf/712.2849


雷达卡



京公网安备 11010802022788号







