楼主: 大多数88
380 0

[计算机科学] 具有数量偏好的稳定婚姻问题 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
71.3197
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-4-10 09:45:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
稳定的婚姻问题是一个众所周知的男女配对问题,使没有结婚的男人和女人都更喜欢对方。这样的问题有各种各样的实际应用,从将住院医生与医院匹配,到将学生与学校匹配,或者更广泛地与任何双边市场匹配。在古典的稳定婚姻问题中,男女双方都以定性的方式表达了对另一性别成员的严格偏好顺序。在这里,我们考虑具有定量偏好的稳定婚姻问题:每个男人(例如,女人)为每个女人(例如,男人)提供一个分数。这类问题比经典的稳定婚姻问题更有表现力。此外,在一些现实生活中,表达分数(例如,对利润或成本进行建模)比定性偏好排序更自然。在此背景下,我们定义了稳定和最优的新概念,并根据这些概念提供了寻找稳定和/或最优婚姻的算法。虽然采用定量偏好大大提高了表达性,但我们表明,在大多数情况下,通过对经典稳定婚姻问题的现有算法进行调整,可以找到期望的解。
---
英文标题:
《Stable marriage problems with quantitative preferences》
---
作者:
Maria Silvia Pini and Francesca Rossi and Brent Venable and Toby Walsh
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Computer Science        计算机科学
二级分类:Multiagent Systems        多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--

---
英文摘要:
  The stable marriage problem is a well-known problem of matching men to women so that no man and woman, who are not married to each other, both prefer each other. Such a problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or more generally to any two-sided market. In the classical stable marriage problem, both men and women express a strict preference order over the members of the other sex, in a qualitative way. Here we consider stable marriage problems with quantitative preferences: each man (resp., woman) provides a score for each woman (resp., man). Such problems are more expressive than the classical stable marriage problems. Moreover, in some real-life situations it is more natural to express scores (to model, for example, profits or costs) rather than a qualitative preference ordering. In this context, we define new notions of stability and optimality, and we provide algorithms to find marriages which are stable and/or optimal according to these notions. While expressivity greatly increases by adopting quantitative preferences, we show that in most cases the desired solutions can be found by adapting existing algorithms for the classical stable marriage problem.
---
PDF链接:
https://arxiv.org/pdf/1007.5120
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:婚姻问题 Quantitative Applications Intelligence Environments 进行 定性 分数 表明 problems

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-31 19:12