楼主: 大多数88
422 0

[量化金融] 非光滑收益的效用无差异估值 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.8997
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-4-28 17:53:29 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文标题:
《Utility indifference valuation for non-smooth payoffs with an
  application to power derivatives》
---
作者:
Giuseppe Benedetti and Luciano Campi
---
最新提交年份:
2013
---
英文摘要:
  We consider the problem of exponential utility indifference valuation under the simplified framework where traded and nontraded assets are uncorrelated but where the claim to be priced possibly depends on both. Traded asset prices follow a multivariate Black and Scholes model, while nontraded asset prices evolve as generalized Ornstein-Uhlenbeck processes. We provide a BSDE characterization of the utility indifference price (UIP) for a large class of non-smooth, possibly unbounded, payoffs depending simultaneously on both classes of assets. Focusing then on European claims and using the Gaussian structure of the model allows us to employ some BSDE techniques (in particular, a Malliavin-type representation theorem due to Ma (2002)) to prove the regularity of Z and to characterize the UIP for possibly discontinuous European payoffs as a viscosity solution of a suitable PDE with continuous space derivatives. The optimal hedging strategy is also identified essentially as the delta hedging strategy corresponding to the UIP. Since there are no closed-form formulas in general, we also obtain asymptotic expansions for prices and hedging strategies when the risk aversion parameter is small. Finally, our results are applied to pricing and hedging power derivatives in various structural models for energy markets.
---
中文摘要:
我们考虑了在简化框架下的指数效用无差异估值问题,其中交易资产和非交易资产是不相关的,但定价要求可能取决于两者。交易资产价格遵循多元Black and Scholes模型,而非交易资产价格则按照广义的Ornstein-Uhlenbeck过程演化。对于同时依赖于两类资产的一大类非光滑、可能无界的收益,我们提供了效用无差异价格(UIP)的BSDE特征。然后,关注欧洲索赔并使用模型的高斯结构,允许我们使用一些BSDE技术(特别是Malliavin型表示定理,根据Ma(2002))来证明Z的正则性,并将可能不连续的欧洲支付的UIP描述为具有连续空间导数的适当偏微分方程的粘性解。最优套期保值策略本质上也被确定为与UIP对应的增量套期保值策略。由于一般不存在闭式公式,当风险规避参数很小时,我们还得到了价格和套期保值策略的渐近展开式。最后,我们的结果被应用于能源市场各种结构模型中的电力衍生品定价和套期保值。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Pricing of Securities        证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--

---
PDF下载:
-->
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Indifference Quantitative Multivariate SIMULTANEOUS Presentation

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 03:51