《About the decomposition of pricing formulas under stochastic volatility
models》
---
作者:
Raul Merino, Josep Vives
---
最新提交年份:
2015
---
英文摘要:
We obtain a decomposition of the call option price for a very general stochastic volatility diffusion model extending the decomposition obtained by E. Al\\`os in [2] for the Heston model. We realize that a new term arises when the stock price does not follow an exponential model. The techniques used are non anticipative. In particular, we see also that equivalent results can be obtained using Functional It\\^o Calculus. Using the same generalizing ideas we also extend to non exponential models the alternative call option price decompostion formula obtained in [1] and [3] written in terms of the Malliavin derivative of the volatility process. Finally, we give a general expression for the derivative of the implied volatility under both, the anticipative and the non anticipative case.
---
中文摘要:
我们得到了一个非常普遍的随机波动率扩散模型的看涨期权价格分解,扩展了E.Al\\`os在[2]中对Heston模型的分解。我们意识到,当股票价格不遵循指数模型时,一个新的术语就会出现。使用的技术是非预期的。特别是,我们还看到,使用函数It^o演算可以得到等价的结果。利用同样的推广思想,我们还将[1]和[3]中获得的替代看涨期权价格分解公式扩展到非指数模型,该公式是根据波动过程的马利雅文导数编写的。最后,我们给出了预期和非预期情况下隐含波动率导数的一般表达式。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->
About_the_decomposition_of_pricing_formulas_under_stochastic_volatility_models.pdf
(237.13 KB)


雷达卡



京公网安备 11010802022788号







