《Conjoint axiomatization of the Choquet integral for heterogeneous
product sets》
---
作者:
Mikhail Timonin
---
最新提交年份:
2016
---
英文摘要:
We propose an axiomatization of the Choquet integral model for the general case of a heterogeneous product set $X = X_1 \\times \\ldots \\times X_n$. In MCDA elements of $X$ are interpreted as alternatives, characterized by criteria taking values from the sets $X_i$. Previous axiomatizations of the Choquet integral have been given for particular cases $X = Y^n$ and $X = \\mathbb{R}^n$. However, within multicriteria context such identicalness, hence commensurateness, of criteria cannot be assumed a priori. This constitutes the major difference of this paper from the earlier axiomatizations. In particular, the notion of \"comonotonicity\" cannot be used in a heterogeneous structure, as there does not exist a \"built-in\" order between elements of sets $X_i$ and $X_j$. However, such an order is implied by the representation model. Our approach does not assume commensurateness of criteria. We construct the representation and study its uniqueness properties.
---
中文摘要:
我们提出了异类产品集$X=X_1\\times\\ldots\\times X_n$的一般情况下Choquet积分模型的公理化。在MCDA中,$X$的元素被解释为替代品,其特征是标准取集合$X_i$中的值。对于特殊情况$X=Y^n$和$X=\\mathbb{R}^n$,已经给出了Choquet积分的先前公理化。然而,在多标准的背景下,不能先验地假定标准的这种相同性,因此是共通性。这构成了本文与早期公理化的主要区别。特别是,不能在异构结构中使用“共单调性”的概念,因为集合$X_i$和$X_j$的元素之间不存在“内置”顺序。然而,这种顺序是由表示模型隐含的。我们的方法不假设标准的共通性。我们构造了这个表示并研究了它的唯一性。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
PDF下载:
-->
Conjoint_axiomatization_of_the_Choquet_integral_for_heterogeneous_product_sets.pdf
(349.51 KB)


雷达卡



京公网安备 11010802022788号







