《Valuing the anticipative information on the stochastic short interest
rates》
---
作者:
Bernardo D\'Auria and Jos\\\'e Antonio Salmer\\\'on
---
最新提交年份:
2021
---
英文摘要:
Portfolio optimization is an important financial tool in particular to price financial derivatives. However the standard techniques do not apply when it is needed to extend the model by including insight information and one has to recur to more sophisticated tools such as the enlargement of filtrations. We show how to apply this technique to value the anticipative information about the short interest rate. We model the short rates by an affine diffusion process and compute the optimal portfolio for a large class of insight information and different utility functions. We conclude with a more detailed analysis of the Vasicek model and with some numerical examples.
---
中文摘要:
投资组合优化是一种重要的金融工具,尤其是对金融衍生品进行定价。然而,当需要通过包含洞察信息来扩展模型,并且必须使用更复杂的工具(如扩大过滤)时,标准技术并不适用。我们展示了如何应用这种技术来评估有关短期利率的预期信息。我们利用仿射扩散过程对短期利率进行建模,并针对一大类洞察信息和不同的效用函数计算最优投资组合。最后,我们对Vasicek模型进行了更详细的分析,并给出了一些数值例子。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->
Valuing_the_anticipative_information_on_the_stochastic_short_interest_rates.pdf
(652.31 KB)


雷达卡



京公网安备 11010802022788号







