英文标题:
《The robust superreplication problem: a dynamic approach》
---
作者:
Laurence Carassus, Jan Obloj and Johannes Wiesel
---
最新提交年份:
2019
---
英文摘要:
In the frictionless discrete time financial market of Bouchard et al.(2015) we consider a trader who, due to regulatory requirements or internal risk management reasons, is required to hedge a claim $\\xi$ in a risk-conservative way relative to a family of probability measures $\\mathcal{P}$. We first describe the evolution of $\\pi_t(\\xi)$ - the superhedging price at time $t$ of the liability $\\xi$ at maturity $T$ - via a dynamic programming principle and show that $\\pi_t(\\xi)$ can be seen as a concave envelope of $\\pi_{t+1}(\\xi)$ evaluated at today\'s prices. Then we consider an optimal investment problem for a trader who is rolling over her robust superhedge and phrase this as a robust maximisation problem, where the expected utility of inter-temporal consumption is optimised subject to a robust superhedging constraint. This utility maximisation is carrried out under a new family of measures $\\mathcal{P}^u$, which no longer have to capture regulatory or institutional risk views but rather represent trader\'s subjective views on market dynamics. Under suitable assumptions on the trader\'s utility functions, we show that optimal investment and consumption strategies exist and further specify when, and in what sense, these may be unique.
---
中文摘要:
在Bouchard et al.(2015)的无摩擦离散时间金融市场中,我们考虑了一个交易员,由于监管要求或内部风险管理原因,他被要求以相对于一系列概率测度$\\数学{P}的风险保守方式对冲索赔$\\ xi$。我们首先通过动态规划原理描述了$\\ pi\\t(\\ xi)$-负债$\\ xi$到期$\\ t$的超边际价格$\\ pi\\t(\\ xi)$的演变,并表明$\\ pi\\t(\\ xi)$可以被视为$\\ pi\\t+1}(\\ xi)$的凹包络,以今天的价格进行评估。然后,我们考虑一个交易员的最优投资问题,该交易员正在滚动其稳健的超边际,并将其表述为稳健的最大化问题,其中跨期消费的预期效用在稳健的超边际约束下得到优化。这种效用最大化是在一系列新的衡量指标下实现的,这些指标不再需要捕捉监管或机构风险观点,而是代表交易者对市场动态的主观观点。在对交易者效用函数的适当假设下,我们证明了最优投资和消费策略的存在,并进一步说明了这些策略何时以及在何种意义上可能是唯一的。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







