固定效应:
- grun.fe<-plm(inv~value+capital,data=Grunfeld,model="within")
- summary(grun.fe)
- Oneway (individual) effect Within Model
- Call:
- plm(formula = inv ~ value + capital, data = Grunfeld, model = "within")
- Balanced Panel: n=10, T=20, N=200
- Residuals :
- Min. 1st Qu. Median 3rd Qu. Max.
- -184.000 -17.600 0.563 19.200 251.000
- Coefficients :
- Estimate Std. Error t-value Pr(>|t|)
- value 0.110124 0.011857 9.2879 < 2.2e-16 ***
- capital 0.310065 0.017355 17.8666 < 2.2e-16 ***
- ---
- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
- Total Sum of Squares: 2244400
- Residual Sum of Squares: 523480
- R-Squared : 0.76676
- Adj. R-Squared : 0.72075
- F-statistic: 309.014 on 2 and 188 DF, p-value: < 2.22e-16
- > grun.re<-plm(inv~value+capital,data=Grunfeld,model="random")
- > summary(grun.re)
- Oneway (individual) effect Random Effect Model
- (Swamy-Arora's transformation)
- Call:
- plm(formula = inv ~ value + capital, data = Grunfeld, model = "random")
- Balanced Panel: n=10, T=20, N=200
- Effects:
- var std.dev share
- idiosyncratic 2784.46 52.77 0.282
- individual 7089.80 84.20 0.718
- theta: 0.8612
- Residuals :
- Min. 1st Qu. Median 3rd Qu. Max.
- -178.00 -19.70 4.69 19.50 253.00
- Coefficients :
- Estimate Std. Error t-value Pr(>|t|)
- (Intercept) -57.834415 28.898935 -2.0013 0.04674 *
- value 0.109781 0.010493 10.4627 < 2e-16 ***
- capital 0.308113 0.017180 17.9339 < 2e-16 ***
- ---
- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
- Total Sum of Squares: 2381400
- Residual Sum of Squares: 548900
- R-Squared : 0.7695
- Adj. R-Squared : 0.75796
- F-statistic: 328.837 on 2 and 197 DF, p-value: < 2.22e-16
请问如何在R中得到截距项的结果。


雷达卡






京公网安备 11010802022788号







