Call:
glm(formula = Y ~ project + duty_time + age + edu + complete +
dist + pro_c, family = binomial, data = city)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.5340 0.0689 0.1900 0.4103 1.5710
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
(Intercept) 34.64496 7.50492 4.616 3.91e-06 ***
project -0.41010 0.54316 -0.755 0.4502
duty_time 0.08147 0.09253 0.880 0.3787
age -0.51124 0.10750 -4.756 1.98e-06 ***
edu 0.60957 0.35576 1.713 0.0866 .
complete 0.57447 1.30409 0.441 0.6596
dist 0.26857 0.56732 0.473 0.6359
pro_c NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 211.28 on 359 degrees of freedom
Residual deviance: 153.51 on 353 degrees of freedom
(2 observations deleted due to missingness)
AIC: 167.51
Number of Fisher Scoring iterations: 7
我对数据进行progit回归,为什么会出现NA?该如何修改?


雷达卡




京公网安备 11010802022788号







