楼主: lemononeplus
13046 13

[问答] [求助]若数据同时存在多重共线性,异方差,自相关问题 [推广有奖]

  • 0关注
  • 2粉丝

已卖:43份资源

博士生

34%

还不是VIP/贵宾

-

威望
0
论坛币
7554 个
通用积分
0.9401
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
2291 点
帖子
457
精华
0
在线时间
24 小时
注册时间
2008-4-1
最后登录
2015-10-30

楼主
lemononeplus 发表于 2008-7-10 06:17:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

若数据同时存在多重共线性,异方差,自相关问题:

1,应以何顺序削除他们的影响,

     先消除多重共线性,再WLS消除异方差,最后解决时间序列自相关?

     or

     先消除多重共线性,再解决时间序列自相关,最后WLS消除异方差?

2,以某种顺序为优的依据又是什么?

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:多重共线性 自相关问题 多重共线 自相关 共线性 数据 方差 线性 自相关

回帖推荐

hanszhu 发表于9楼  查看完整内容

l       It all depends on your research model, i.e. if you have time series autocorrelation and multicollinearity occurs due to same reason, having time series day as independent variables. So, if you have time series apply autocorrelation first, multicollinearity will be solved as well.l       In general if not time series multicollinear ...

本帖被以下文库推荐

沙发
lemononeplus 发表于 2008-7-11 10:23:00

顶起

藤椅
liwu666 发表于 2008-7-11 17:04:00

在spss里可以采取step method,然后同时做异方差,自相关的诊断,不知道,对不

板凳
lemononeplus 发表于 2008-7-14 06:09:00

谢谢回复

LS可以说得详细些吗?

我只知道stepwise 方法做OLS,楼上说的step 是指stepwise 吗?stepwise方法不是用来剔除变量方法得到变量最优的回归方程的吗(我猜是对付共线性问题的一种方法)?

自相关和异方差的解决的先后顺序是怎样的呢?先用WLS解决异方差,还是先用ARMA模型解决自相关?

[此贴子已经被作者于2008-7-14 7:30:24编辑过]

报纸
lemononeplus 发表于 2008-7-15 04:30:00
顶啊顶

地板
lemononeplus 发表于 2008-7-16 04:53:00

7
lemononeplus 发表于 2008-7-17 04:41:00

这个问题怎么没人回答呢

8
sheepmiemie 发表于 2008-7-17 11:51:00

纸上谈兵一下:

顺序应该是自相关最后处理,多重共线性与异方差的顺序随意。

原因也不复杂:

处理多重共线性与处理异方差之间并不会产生什么的影响,所以二者的顺序无所谓;

但没有多重共线性和异方差的序列自相关显然要较之前容易得多。

[img]http://i972.photobucket.com/albums/ae202/sheepmiemie/d50d789d.jpg

9
hanszhu 发表于 2008-7-17 12:02:00

l       It all depends on your research model, i.e. if you have time series autocorrelation and multicollinearity occurs due to same reason, having time series day as independent variables. So, if you have time series apply autocorrelation first, multicollinearity will be solved as well.

l       In general if not time series multicollinearity is the result of the research model, review your variables, maybe some of them are not necessary or maybe you can build indices or scales to aggregate some of the independent variables so that you get rid off the multicollinearity. However, in social sciences it almost impossible to avoid it, anyhow some of the independent variable will have correlation, 0.4 -0.5 is acceptable in social sciences.

l       Heteroscedasticity is the case where residuals are not independent and correlated with dependent variable; this is one of the assumptions to use OLS. You can transform the dependent variable, apply non-linear regression or use MLE instead of OLS, or you can have mixed models where you assign probability to error distributions. This problem is more technical rather than research model driven,

 

I would be more concerned with the first two issues. Again, it depends on your domain (what is acceptable) and your research model. Your theory should lead the research model.

已有 1 人评分经验 论坛币 收起 理由
bakoll + 3 + 3 精彩帖子

总评分: 经验 + 3  论坛币 + 3   查看全部评分

10
lemononeplus 发表于 2008-7-18 05:01:00

谢谢楼上各位大侠的回复,看到一丝光明

It all depends on your research model, i.e. if you have time series autocorrelation and multicollinearity occurs due to same reason, having time series day as independent variables. So, if you have time series apply autocorrelation first, multicollinearity will be solved as well.

[此贴子已经被作者于2008-7-18 5:25:04编辑过]

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-30 05:27