楼主: 机器猫
5247 15

[推荐] My Life As A Quant: Reflections on Physics and Finance选读 [推广有奖]

  • 0关注
  • 0粉丝

本科生

66%

还不是VIP/贵宾

-

威望
0
论坛币
929 个
通用积分
0
学术水平
5 点
热心指数
1 点
信用等级
0 点
经验
598 点
帖子
72
精华
1
在线时间
0 小时
注册时间
2005-4-30
最后登录
2008-10-6

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

document.body.clientWidth*0.5) {this.resized=true;this.width=document.body.clientWidth*0.5;this.style.cursor='pointer';} else {this.onclick=null}" alt="" />

Chapter 10: Easy Travel to Other Planets

I had left Fischer's office a little chastened by his sharp remarks about the names of the fields on my calculator, but in a few days he let me know that I could join him and Bill Toy in their effort to create a new bond options model. It was a singular opportunity that had a large and beneficial effect on my life.

That spring of 1986 I attended my first options conference, an annual event organized by Howard Baker, Menachem Brenner, and Dan Galai at the Amex. I was one of about a hundred participating quants, traders and academics, all of us actively involved in the field at a time when options meetings were still a rarity, before the conference for profit organizations like Risk magazine began to dominate the market and eventually put the Amex options conference out of business. I recall several presentations on new models for valuing bond options, one in particular by Rick Bookstaber, then at Morgan Stanley. You could sense a rising urgency, almost a race, to solve the problem. Fischer told Bill and me that Bob Merton was working on the same problem as a consultant for another investment bank.

The Goldman contingent at the conference had more than an academic interest--our traders were making daily markets in long-expiration options on long-dated bonds, precisely the domain where the contradictions in Ravi's model were most severe. The traders were aware of their need for a better model, and as such were at the forefront of the impetus to replace it.

We knew that we had to model the future behavior of all Treasury bonds, that is, the evolution of the entire yield curve. How to set about it was neither obvious nor easy. A stock price is a single number, and when you model its evolution, you project only one number into an uncertain future. In contrast, the yield curve is a continuum, a string or rubber band whose every point, at any instant, represents the yield of a bond with corresponding maturity. As time passes and bond prices change, the yield curve moves, as illustrated in Figure 10.3. To evolve the entire yield curve forward in time is a much more difficult task: Just as you cannot move the different points on a string completely independently of each other, because the string must stay connected, so bonds close to each other must stay connected, too.

document.body.clientWidth*0.5) {this.resized=true;this.width=document.body.clientWidth*0.5;this.style.cursor='pointer';} else {this.onclick=null}" alt="" /> FIGURE 10.3

How, then, to project bond prices into the future? Fischer, Bill, and I were pragmatists. We were building a model for traders, and we wanted it to be simple, consistent, and reasonably realistic. Simple meant that only one random factor drove all changes. Consistent meant that it had to value all bonds in agreement with their current market prices; if it produced the wrong bond prices, it was pointless to use it to value options on those bonds. Finally, realistic meant that the model's future yield curves should move through ranges similar to those experienced by actual yield curves.

When physicists build models, they often first resort to a toy representation of the world in which space and time are discrete and exist only at points on a lattice--it makes picturing the mathematics much easier. We built our model in the same vein. We imagined a world in which the shortest investment you could make lasted exactly one year, and was represented by the one-year Treasury bill interest rate. Longer term rates would then be a reflection of the market's perception of the probable range of future short-term (that is, one-year) rates.

In this spirit, we built a simple model of future one-year rates that resembled a discrete version of the stock price distributions. The initial one-year rate, as shown in Figure 10.4, was known from the current yield curve. As you looked further out into the future, rates could range over progressively wider values.

document.body.clientWidth*0.5) {this.resized=true;this.width=document.body.clientWidth*0.5;this.style.cursor='pointer';} else {this.onclick=null}" alt="" /> FIGURE 10.4

In order to complete our model, we now had to determine the range of future one-year rates at every year in the future. In our model, the key principle was to think of longer-term bonds as being generated by successive investments in short-term bonds. From this point of view, two years of interest is obtained by two successive one-year investments, the first at a known rate, the second at an uncertain one. The market's price for a two-year bond today depends on its view of the distribution of future one-year rates. You can calculate the logical value of the current two-year bond yield, from the current one-year yield and the distribution of one-year rates one year hence. Similarly, you can calculate the volatility or uncertainty of the current two-year yield from the volatility of the distribution of one-year rates one year hence. Alternatively, working backwards, since the current two-year yield and its volatility is known from the market, you can deduce the distribution of one-year rates one-year hence, as shown in Figure 10.5.

document.body.clientWidth*0.5) {this.resized=true;this.width=document.body.clientWidth*0.5;this.style.cursor='pointer';} else {this.onclick=null}" alt="" /> Figure 10.5

In the same way, the value of the current three-year yield can be found from the current one-year rate, the known distribution of one-year rates one year hence (already deduced from the current two-year yield) and the distribution of one-year rates two years hence. But, since the value of the current three-year yield is known, you can use it to deduce the distribution of one-year rates two years hence. Continuing in this way, you can use the current yield curve at any instant to pin down the range of all future one-year rates, as illustrated in Figure 10.5.

This was the essence of our model. When Bill and I programmed it, it seemed to work--we could extract the market's expectation of the distributions of future one-year rates from the current yield curve and its volatility. There was nothing holy about the one-year time steps we started with. Once the model worked, we used monthly, weekly, or sometimes even daily steps on a lattice, determining the market's view of the distribution of future short-term rates at any instant from the current yield curve. A typical lattice (or tree, as we called it, because of the way an initial interest rate forked out into progressively wider branches) had hundreds or thousands of equally spaced short periods, as illustrated in Figure 10.6.

document.body.clientWidth*0.5) {this.resized=true;this.width=document.body.clientWidth*0.5;this.style.cursor='pointer';} else {this.onclick=null}" alt="" /> FIGURE 10.6

We had aimed to make our model simple and consistent, and it was-we could match all current bond prices with one tree. We could then use the same calibrated tree to value any security whose payouts in the future had a known dependence on interest rates by averaging those payouts over the distribution. In particular, we could value the payout of an option of any expiration on a bond of any maturity.

It was particularly attractive that our new model satisfied the law of one price. Our tree functioned as a computational engine that produced the current value of a security by averaging its future payouts; you put future payouts onto the end of the tree, cranked the handle that averaged and then discounted them over the interest rate distribution, and ended up with the current price. The engine didn't care what name you gave to the security that produced the payout-bond, option, call it what you like. As long as the future payouts were identical, the engine produced the same price.

I met with Fischer regularly over the next eight years, though we never again worked as closely as we did when we developed BDT (Black-Derman-Toy model). He was the most remarkable person I met at Goldman.

His most noticeable quality was his stubborn and meticulous devotion to clarity and simplicity. In writing and speaking, he put weight on both content and style. When we wrote the first draft of our paper on a one-factor model of interest rates, Fischer wanted no equations in it, and I had to struggle long and hard to satisfy his standards: He wanted accuracy and honesty without the technical details, which meant that you had to understand the model viscerally, and then explain that understanding. I think it was the clarity of the mechanics of our model that made it so popular and widely used.

Because he liked clarity, and perhaps because his training was not in economics, Fischer avoided excessive formalization. His papers were the antithesis of the unnecessarily rigorous lemma-filled research papers of financial economics journals. He tried to write as he spoke, in a terse but good-natured conversational style, using clear but casual, unadorned English. There was a touch of jerkiness to his prose because it lacked the technically superfluous conjunctions--and, but, thus, and therefore--that people commonly use to link the flow of sentences in scientific articles.

Fischer expected clarity and directness from others, too. Though he was generous with his time and didn't care about rank, you had to prepare for an audience with him. If it was evident that you hadn't thought carefully about your question, you quickly discovered that he wasn't going to do the thinking for you. And, if you didn't grasp his answer and repeated your question, he would simply repeat his answer.

A very direct man, he was uncomfortable with small talk. When he had nothing to say, he said nothing; this could be disconcerting on the telephone, where he often simply kept silent for a minute or two without terminating the conversation. Sometimes, this led you to babble in an attempt to fill the silence, until Fischer simply said an abrupt goodbye and hung up.

He once told me that one of the things that limited his influence was the fact that he always told people the truth, even if they didn't want to hear it, a characteristic I can vouch for myself. When he grew skeptical of some of the information technology managers in his division at Goldman in the early 1990s, he purposefully met with them all and then made a frank list of who was good and who was bad, and handed it over to his bosses. He laughed sheepishly but half-proudly when he conceded that he had been naive to think that he would gain anything from this.

Among Goldman partners he struck me as always a bit of an outsider. In the era before the firm went public, a "class" of partners was appointed once every two years, and each of them then advanced by being allowed to buy progressively larger shares of the company. Fischer once said to me that he was proud of possessing fewer shares than anyone else in his class of 1986.

This directness and informality characterized his research, too. His approach seemed to me to consist of unafraid hard thinking, intuition, and no great reliance on advanced mathematics. This was inspiring to lesser mortals. He attacked problems directly, with whatever skills he had at his command, and often they worked. He gave you the sense (perhaps misguided) that you could discover deep truths with whatever skills you had, too, if you were willing to think hard. He was guided by his great economic intuition; though his mathematical skills were unexceptional, his instinct was strong, and he was tenacious in trying to attain insight before resorting to mathematics.

In modeling he had a taste for the concrete: He liked to describe the financial world with variables that represented observable phenomena rather than hidden statistical or econometric factors. He thought practical usefulness and accuracy were more important than elegance, despite the unquestionable elegance that lends so much appeal to the Black-Scholes-Merton framework he founded. He had a strong pragmatic streak; he was at least as much a practitioner as an academic, willing to devote time and attention to software, trading systems, and user interfaces. He thought that these were just as important as the models themselves.

[此贴子已经被作者于2005-7-18 15:52:51编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:reflections reflection Finance My life Physics Finance Physics quant 选读 reflections

我恒有三宝,持而宝之,一曰慈,二曰俭,三曰不敢为天下先
沙发
zhaosl 发表于 2005-7-19 08:16:00 |只看作者 |坛友微信交流群
很好,提供这本书给大家好吗?
阿里云盘注册就有1000G,点此链接领取福利:
https://pages.aliyundrive.com/mobile-page/web/beinvited.html?code=ca953c2

使用道具

藤椅
walker 发表于 2005-7-21 11:34:00 |只看作者 |坛友微信交流群

I have the softcopy in my laptop, but it cannot be open in others computer

使用道具

板凳
walker 发表于 2005-7-21 11:35:00 |只看作者 |坛友微信交流群
it is avaliable in amazon

使用道具

报纸
gaulle 发表于 2005-7-21 12:56:00 |只看作者 |坛友微信交流群
please still upload it. we can crack it

使用道具

地板
manchurian 发表于 2005-12-1 17:17:00 |只看作者 |坛友微信交流群
那位老兄能上传一个全的阿

使用道具

7
机器猫 发表于 2005-12-1 17:54:00 |只看作者 |坛友微信交流群
My Life As a Quant : Reflections On Physics and Finance (eBook)
by Derman, Emanuel.
Publication: Hoboken, N.J John Wiley & Sons, Inc. (US), 2004.

Show Details | Add to My List

这个书netlibrary上已经有了,可惜我没有权限下载,如果那位有这个书的权限(估计要有8万的馆藏才会有这本书,我找了一个65000册的馆,都没有打捞到),麻烦帮我注册一个账号,将赠论坛币若干,价格面议。

我恒有三宝,持而宝之,一曰慈,二曰俭,三曰不敢为天下先

使用道具

8
xlsxxgy 发表于 2005-12-2 08:44:00 |只看作者 |坛友微信交流群
十分期待中。

使用道具

9
aidm 发表于 2005-12-2 15:18:00 |只看作者 |坛友微信交流群
这本书,看上去很吸引人,不过quant的工作真和物理学有相通之处!*_*

使用道具

10
sdram 发表于 2005-12-2 17:41:00 |只看作者 |坛友微信交流群

Black-Derman-Toy model

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 23:29