请问在R中,用随机前言分析,进行回归,得出如下结果,怎样分析拟合结果的好坏,如sigmaSq 、 gamma、log likelihood value、mean efficiency,怎样解读这些指标。急需解释,非常感谢!
数据输入代码如下:
mydata<-read.table(file="clipboard",sep="\t",header=T)
mydata
library(frontier)
fit<-sfa(log(N)~log(D),data=mydata)
fit
summary(fit)
拟合结果如下:
fit
Call:
sfa(formula = log(N) ~ log(D), data = mydata)
Maximum likelihood estimates
(Intercept) log(D) sigmaSq gamma
8.730e+00 -4.214e-01 2.079e-03 2.015e-05
> summary(fit)
Error Components Frontier (see Battese & Coelli 1992)
Inefficiency decreases the endogenous variable (as in a production function)
The dependent variable is logged
Iterative ML estimation terminated after 47 iterations:
log likelihood values and parameters of two successive iterations
are within the tolerance limit
final maximum likelihood estimates
Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.7298e+00 2.9557e-01 29.5356 < 2.2e-16 ***
log(D) -4.2145e-01 9.1244e-02 -4.6189 3.858e-06 ***
sigmaSq 2.0791e-03 8.0184e-04 2.5929 0.009518 **
gamma 2.0148e-05 3.5018e-02 0.0006 0.999541
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
log likelihood value: 23.36575
cross-sectional data
total number of observations = 14
mean efficiency: 0.9998367


雷达卡




京公网安备 11010802022788号







