有一个问题想请教一下大家,面板数据的向量自回归是为了知道滞后期变量和当期的关系,我使用PVAR2(stata里面的)
pvar2 Y X,lag(5)
得到
- Panel vector autoregresssion
- GMM Estimation
- Final GMM Criterion Q(b) = 5.78e-35
- Initial weight matrix: Identity
- GMM weight matrix: Robust
- No. of obs = 440905
- No. of panels = 1062
- Ave. no. of T = 415.165
- ------------------------------------------------------------------------------
- | Coef. Std. Err. z P>|z| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- Y|
- Y|
- L1. | .1900369 .0024416 77.83 0.000 .1852515 .1948222
- L2. | -.0493902 .002657 -18.59 0.000 -.0545979 -.0441826
- L3. | .0218652 .0025435 8.60 0.000 .0168799 .0268504
- L4. | .0887773 .0025603 34.67 0.000 .0837591 .0937955
- L5. | .0089981 .0025481 3.53 0.000 .004004 .0139922
- |
- X|
- L1. | .0234112 .0045164 5.18 0.000 .0145593 .0322632
- L2. | .0025309 .0041811 0.61 0.545 -.0056639 .0107256
- L3. | -.0224825 .0038464 -5.85 0.000 -.0300214 -.0149436
- L4. | .0042001 .0038028 1.10 0.269 -.0032533 .0116535
- L5. | .025676 .003784 6.79 0.000 .0182596 .0330925
- -------------+----------------------------------------------------------------
- X|
- Y|
- L1. | .2226354 .0024279 91.70 0.000 .2178769 .2273939
- L2. | .0380085 .0054457 6.98 0.000 .027335 .0486819
- L3. | .0077096 .0034605 2.23 0.026 .0009272 .0144919
- L4. | .0297273 .007742 3.84 0.000 .0145533 .0449013
- L5. | -.0189955 .0036076 -5.27 0.000 -.0260662 -.0119247
- |
- X|
- L1. | .0788124 .0233642 3.37 0.001 .0330193 .1246055
- L2. | .0307169 .0135353 2.27 0.023 .0041883 .0572456
- L3. | -.0732874 .0358002 -2.05 0.041 -.1434545 -.0031202
- L4. | .0850096 .0187225 4.54 0.000 .0483142 .121705
- L5. | -.0415947 .0236334 -1.76 0.078 -.0879154 .004726
我们可以知道,部分是有显著关系,部分没有显著关系,然后做格兰杰因果关系
- .pvargranger
- panel VAR-Granger causality Wald test
- Ho: Excluded variable does not Granger-cause Equation variable
- Ha: Excluded variable Granger-causes Equation variable
- +------------------------------------------------------+
- | Equation \ Excluded | chi2 df Prob > chi2 |
- |----------------------+-------------------------------|
- |Y | |
- | Dlogfocus | 116.079 5 0.000 |
- | ALL | 116.079 5 0.000 |
- |----------------------+-------------------------------|
- |X | |
- | Dlogclose | 9416.693 5 0.000 |
- | ALL | 9416.693 5 0.000 |
这个意思应当是表示存在格兰杰因果关系
现在的问题是:
查询了帮助文档说:pvargranger要在做了PVAR2之后才能做,这是为什么?从格兰杰的结果中也看不出来滞后阶数的AIC等信息,那只做这些就够了吗?
有没有其它方法 直接做格兰杰因果检验,谢谢大家


雷达卡





京公网安备 11010802022788号







