流行病学大牛Rothman很早以前就提出生物学交互作用的概念,并认为生物学交互作用的评价应该基于相加尺度而非相乘尺度。但是传统的logistic、Cox回归等只能构建并评价乘法交互项,并不能直接构建并评价加法交互项或生物学交互项。但是评价加法交互项的基本元素仍然可以来自于传统的logistic、Cox回归。因此,非常有必要了解相关方法。
详细原理和构建方法参考以下文献:
(1)Rothman K, Greenland S (2008). Modern Epidemiology (3rd edition). Chapter 16 Applications of Stratified Analysis Methods (Analyses of Biologic Interactions).
(2)Hosmer DW, Lemeshow S (1992). Confidence interval estimation of interaction. Epidemiology 3: 452 - 456.
中文文献参考:邱宏, 余德新, 王晓蓉, 付振明, 谢立亚. logistic回归模型中交互作用的分析及评价. 中华流行病学杂志 2008;29:934-937.
在这些参考文献中,Rothman 的Modern Epidemiology (3rd edition)侧重理论,没有实例。Hosmer (1992)和中文文献虽提供相关表格,但构建相关数据库仍然是一件麻烦的事情。最合适的学习方法是利用R的epiR程序包来学习相关内容。具体R程序如下(提醒:在运用下面程序前记得先安装epiR程序包并载用该程序包):
- Examples
- ## Data from Rothman and Keller (1972) evaluating the effect of joint exposure
- ## to alcohol and tabacco on risk of cancer of the mouth and pharynx (cited in
- ## Hosmer and Lemeshow, 1992):
- can <- c(rep(1, times = 231), rep(0, times = 178), rep(1, times = 11),
- rep(0, times = 38))
- smk <- c(rep(1, times = 225), rep(0, times = 6), rep(1, times = 166),
- rep(0, times = 12), rep(1, times = 8), rep(0, times = 3), rep(1, times = 18),
- rep(0, times = 20))
- alc <- c(rep(1, times = 409), rep(0, times = 49))
- dat <- data.frame(alc, smk, can)
- ## Table 2 of Hosmer and Lemeshow (1992):
- dat.glm01 <- glm(can ~ alc + smk + alc:smk, family = binomial, data = dat)
- summary(dat.glm01)
- ## Rothman defines an alternative coding scheme to be employed for
- ## parameterising an interaction term. Using this approach, instead of using
- ## two risk factors and one product term to represent the interaction (as
- ## above) the risk factors are combined into one variable with (in this case)
- ## four levels:
- ## a.neg b.neg: 0 0 0
- ## a.pos b.neg: 1 0 0
- ## a.neg b.pos: 0 1 0
- ## a.pos b.pos: 0 0 1
- dat$d <- rep(NA, times = nrow(dat))
- dat$d[dat$alc == 0 & dat$smk == 0] <- 0
- dat$d[dat$alc == 1 & dat$smk == 0] <- 1
- dat$d[dat$alc == 0 & dat$smk == 1] <- 2
- dat$d[dat$alc == 1 & dat$smk == 1] <- 3
- dat$d <- factor(dat$d)
- ## Table 3 of Hosmer and Lemeshow (1992):
- dat.glm02 <- glm(can ~ d, family = binomial, data = dat)
- summary(dat.glm02)
- epi.interaction(model = dat.glm02, coeff = c(2,3,4), type = "RERI",
- conf.level = 0.95)
- epi.interaction(model = dat.glm02, coeff = c(2,3,4), type = "APAB",
- conf.level = 0.95)
- epi.interaction(model = dat.glm02, coeff = c(2,3,4), type = "S",
- conf.level = 0.95)
- ## Page 455 of Hosmer and Lemeshow (1992):
- ## RERI: 3.73 (95% CI -1.84 -- 9.32).
- ## AP[AB]: 0.41 (95% CI -0.07 -- 0.90).
- ## S: 1.87 (95% CI 0.64 -- 5.41).


雷达卡




京公网安备 11010802022788号







