楼主: 论文库
1231 0

基于机器学习的寿险精算生命表函数估计 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-9-16 02:00:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:传统的分数年龄假设(fractional age assumption,FAA)形式简单且计算容易,但它们却存在死力函数在整数年龄处有较大跳跃的缺点,并且无法保证能精确地捕捉到生存函数的真实趋势。最小二乘支持向量回归机(least square support vector regression,LSSVR)作为机器学习领域的一项经典技术被广泛应用于对统计数据的回归与分析中。从机器学习的新视角来研究寿险精算理论中的生命表数据,对生存函数数据进行回归,并用成功拟合的生存函数构建死力函数及平均余命函数。LSSVR模型对生存函数拟合的有效性通过Makeham函数来进行验证,并与经典的三个FAA模型进行比较,实验表明,LSSVR模型的回归能力远高于经典的FAA模型。

原文链接:http://www.cqvip.com/QK/93285X/201410/71678884504849524948485048.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:寿险精算 机器学习 学习的 生命表 表函数 最小二乘支持向量回归机 生命表 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-6 10:25